• Title/Summary/Keyword: Flexibility ratio

Search Result 280, Processing Time 0.026 seconds

Measurement and management of flexibility for the supply chain system (공급사슬시스템을 위한 유연성의 측정과 관리)

  • Jung, Jung-Woo;Lee, Young-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.643-650
    • /
    • 2005
  • The object of this study is the development of a measuring framework for supply chain flexibility. Prior to treat supply chain flexibility, time flexibility, quantity flexibility, and cash-flow flexibility for each company are newly suggested. Especially, all developed measures can deal with the monetary point of view through various cost functions. Then weights of time flexibility, quantity flexibility, cash-flow flexibility are determined to find the effect of the level of flexibility in the supply chain. This is based on the relationship between the ratio of profit to revenue and value of three developed flexibility measures. To find the level of weight for each flexibility measure, neural network theory is used. Then the forecasting of the ratio of profit to revenue for all companies in the next period can be available. Therefore, all companies in the supply chain can control their operating processes to improve flexibility.

  • PDF

The Effect of the Ratio of Standing to Sitting Height on the Spinal Forward Bending Range of Motion in Normal Subjects (앉은 자세와 기립 자세의 비율이 정상 성인의 체간 굴곡 유연성에 미치는 영향)

  • Kwon, Hyuk-Cheol;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.8 no.2
    • /
    • pp.55-63
    • /
    • 2001
  • For spinal flexibility measurements to be meaningful to clinicians or researchers, they must have a normative information and an understanding of how different variables affect spinal range of motion (ROM). Normal spinal ROM measurements are influenced to differing degrees by many factors. These factors include age, gender, time of day, leisure activities, previous history of low back pain, warming up, and the techniques with which normative data are collected. The additional variables of standing height, ratio of standing height to sitting height, and obesity had not been previously studied extensively and were shown to have a significant effect on flexibility in the sagittal plane. These relationship cannot be explained easily. Thus, the purpose of this study was to determine the relationship between spinal flexibility and individual factors (weight, standing height, and ratio of standing height to sitting height) that influence it. Fifteen healthy subjects between the ages of 20 and 27 years were studied. Two physical therapists measured independently the spinal forward bending ROM in the sagittal plane by Remodified Schober test and Finger-to-floor test. In order to determine the statistical significance of the result the Pearson's correlation was applied at the .05 level of significance. The results of this study were as follows: 1) Significant relationship was not identified between spinal flexibility and weight. 2) Significant relationship was not identified between spinal flexibility and standing height. 3) Significant relationship was not identified between spinal flexibility and ratio of standing height to sitting height.

  • PDF

A Study on the Relationship between Information on Financial Characteristics and Profitability in the Korean Restaurant Industry (국내 레스토랑 기업의 재무 특성 정보와 수익성간의 관계에 관한 연구)

  • Kang, Seok-Woo;Ahn, Seong-Guen
    • Culinary science and hospitality research
    • /
    • v.14 no.4
    • /
    • pp.93-105
    • /
    • 2008
  • This study was attempted to analyze causal relations among flexibility, growth, and profitability variables, which are the financial indexes of restaurant enterprises. The samples were 24 restaurant enterprises in total, and 102 financial statements between 2002 and 2006 were analyzed. As a result of the analysis, total asset growth rate influenced all profitability variables among growth variables. Also, the net sales growth influenced return on sales and return on assets, and the assets turnover influenced return on assets and return on equity. Among flexibility variables, current ratio and interest coverage ratio to operating profit influenced return on assets, and return on equity was influenced by current ratio and debt-to-equity ratio.

  • PDF

Effects of Thoracic Flexibility Exercise Program on Pain, Heart Rate Variability, and Depression in Patients with Chronic Low Back Pain (흉추 가동성 운동프로그램이 만성 요통 환자의 통증과 심박 변이도 및 우울증에 미치는 영향)

  • Park, Donghwan;Lee, Eunhyuk;Lee, Kangseong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.161-170
    • /
    • 2019
  • Purpose : This study aimed to investigate the effects of a thoracic flexibility exercise program on pain, heart rate variability (HRV), and depression in patients with chronic low back pain. Methods : Fifty patients with chronic low back pain participated in this study. Each participant performed a pre-test and post-test. The outcome measures evaluated were a visual analog scale, HRV test results (automatic activity, standard deviation normal to normal [SDNN], low frequency [LF], high frequency [HF], and LF/HF ratio), and the Beck Depression Inventory. Patients underwent conventional physiotherapy for 35 minutes per session. In addition, a thoracic flexibility exercise program (trunk rotation exercise, McKenzie exercise, and supine thoracic extension exercise) were performed 3 times per week for 4 weeks. Results : After the training period, the visual analog scale results showed a significant decrease in the post-test compared to the pre-test. Automatic activity, SDNN, LF, HF, and LF/HF ratio significantly increased in the post-test compared to the pre-test. The Beck depression inventory results significantly decreased in the post-test compared to the pre-test. Conclusion : This study demonstrated that a thoracic flexibility exercise program improves a visual analog scale, HRV (automatic activity, SDNN, LF, HF, and LF/HF ratio), and the Beck Depression Inventory in patients with chronic low back pain.

Dynamic Earth Pressure on Embedded Structure

  • Sadiq, Shamsher;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • Dynamic earth pressure is considered an important parameter in the design of embedded structures. In current engineering design simplified methods developed either for yielding or non-yielding structures are utilized to predict resultant dynamic pressure. The applicability of these equations to embedded structures have not yet been reported. In this study we perform a suite of equivalent linear time history analysis for a range of embedded structure configurations. Numerically calculated dynamic pressure is shown to depend on the flexibility ratio (F), aspect ratio (L/H) of the embedded structure, and ground motion. Increase in L/H and intensity increases the magnitude of dynamic pressure. An increase in F decreases the dynamic pressure. Overall, the trends highlight the need for development of new method that accounts for F and L/H to calculate the dynamic pressure for the performance-based design of embedded structures.

Comparison of the Flexion-Relaxation Ratio of the Hamstring Muscle and Lumbopelvic Kinematics During Forward Bending in Subjects With Different Hamstring Muscle Flexibility

  • Kim, Chang-ho;Gwak, Gyeong-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • Background: Flexion-relaxation phenomenon (FRP) was a term which refers to a sudden onset of myoelectric silence in the erector spinae muscles of the back during standing full forward flexion. Hamstring muscle length may be related to specific pelvic and trunk movements. Many studies have been done on the FRP of the erector spinae muscles. However, no studies have yet investigated the influence of hamstring muscle flexibility on the FRP of the hamstring muscle and lumbopelvic kinematics during forward bending. Objects: The purpose of this study was to examine the flexion-relaxation ratio (FRR) of the hamstring muscles and lumbopelvic kinematics and compare them during forward bending in subjects with different hamstring muscle flexibility. Methods: The subjects of two different groups were recruited using the active knee extension test. Group 1-consisted of 13 subjects who had a popliteal angle under $30^{\circ}$; Group 2-consisted of 13 subjects who had a popliteal angel above $50^{\circ}$. The kinematic parameters during the trunk bending task were recorded using a motion analysis system and the FRRs of the hamstring muscles were calculated. Differences between the groups were identified with an independent t-test. Results: The subjects with greater hamstring length had significantly less lumbar spine flexion movement and more pelvic flexion movement. The subjects with greater pelvic flexion movement had a higher rate of flexion relaxation during full trunk bending (p<.05). Conclusion: The results of this study suggest that differences in hamstring muscle flexibility might cause changes in people's hamstring muscle activity and lumbopelvic kinematics.

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

An experimental study on the behavior of the helical tiebacks in the flexible retaining walls

  • Majid Khanjani;Hamid Reza Saba;Seyed Hamid Lajevardi;Seyed Mohammad Mirhosseini;Ehsanollah Zeighami
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.527-543
    • /
    • 2024
  • In the implementation of most civil structures, especially underground, deep excavations with a vertical slope are required. Using flexible retaining walls is applied as one of the ways to stabilize vertical holes. Therefore, it is necessary to know the parameters affecting the performance of such walls in reducing their horizontal movement. In this research, by building a suitable laboratory model, the parameters of the amount of flexibility, the embedment depth of the wall, the type and number of tieback in the wall were investigated for 42 static laboratory models. The purpose of this research is to study the flexible retaining wall with helical tieback compared to simple tieback at different heights, which shows the best performance in terms of reducing horizontal displacement in proportion to increasing or decreasing flexibility. On the other hand, one of the parameters affecting the flexibility of the wall, which is its bending stiffness, was extracted by numerical software outputs and studied on the results such as relative flexibility, stiffness, safety and numerical stability of the wall.The results of this study show that among the parameters, in the first place, the effect of the type of tieback is inhibited and in the second place, the ratio of thickness to wall height is known as the most important parameter. the best performance for walls with the helical tiebacks in reducing their horizontal displacement can be economically, flexibly and stability assigned to a wall that tiebacks is in the range of H2/t to H4/t and its flexibility ratio is 2/3.

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening

  • Sharma, Rajnish N.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.93-115
    • /
    • 2013
  • This paper describes a study of the influence of a dynamically flexible building structure on pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This model has been validated from experiments conducted using a cylindrical model with a leeward end flexible diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates should therefore be made to these parameters first, if predictions from such models are to have significance to real buildings.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.