• Title/Summary/Keyword: Flex Plate

Search Result 4, Processing Time 0.021 seconds

Determination of Heat Treatment Condition for Hot Press Formed Automotive Flex Plate (자동차용 플렉스 플레이트 제조를 위한 핫프레스 포밍 열처리 조건 최적화)

  • Park, I.H.;Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.186-189
    • /
    • 2008
  • The flex plate, an automotive part which mounts to the automotive engine to transfer torque to transmission, should have considerable hardness and shape accuracy. As a way to produce the flex plate, the hot press forming technology which takes advantages of high formability at elevated temperature, enhanced strength and shape stability was introduced. Therefore, as one of major process parameters the heat treatment condition should be determined to obtain appropriate hardness in the range of manufacturer's specifications. In this study, two heat treatments, austempering and quenching and tempering (QT), were compared as feasible conditions fur the hot press forming of high-carbon tool steel and the hardness and toughness after heat treatments were evaluated. The study showed that both heat treatments resulted in improved hardness but only quenching and tempering showed practicable range of toughness.

  • PDF

The Study on the Properties of EPDM/NR Blends (EPDM/NR 블랜드의 물성에 관한 연구)

  • Go, Jin-Hwan;Park, Sung-Soo
    • Elastomers and Composites
    • /
    • v.29 no.2
    • /
    • pp.121-130
    • /
    • 1994
  • The physical properties of rubber blend between natural rubber(NR) and ethylene propylene diene terpolymer(EPDM) were investigated as a study of EPDM composite materials. For EPDM/NR blends, the effects of ethylene and diene contents in EPDM, blend ratio, dicumyl peroxide(DCP) curing system on the physical properties, interfacial adhesion force and dynamic crack growth etc. were studied. EPDM/NR blends loaded with carbon black were prepared by mechanical mixing and cured by plate heating cure press. Crosslinking density was measured by swelling method with toluene. The physical properties of all blends were measured with Instron, fatigue to failure(FTF), Demattia flex cracking tester(DMFC), scanning electron microscopy (SEM), etc. As the ethylene and diene contents in EPDM increased, the physical properties, such as dynamic crack growth, adhesion to other component were increased too. Interfacial adhesion force of EPDM/NR blends to dissimilar layer was improved by the use of optimum peroxide curing system.

  • PDF

Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing (3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성)

  • Jung, Hyunwoo;Park, Sung Jun;Woo, Heon
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.

Processing of Water Activity Controlled Fish Meat Paste by Dielectric Heating 2. Storage Stability of the Product (내부가열을 이용한 보장성어육(고등어) 연제품의 가공 및 제품개발에 관한 연구 2. 제품저장중의 품질변화)

  • LEE Kang-Ho;LEE Byeong-Ho;You Byeong-Jin;SUH Jae-Soo;JO Jin-Ho;JEONG In-Hak;JEA Yoi-Guan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.361-367
    • /
    • 1984
  • In previous paper(Lee et al., 1984), preparation formula and processing conditions of the fish meat (mackerel) paste using dielectric heating were described, that included the proper shape and size of product and the conditions of dielectric heating, hot air dehydration, and heating with electric heater to yield the minimum expansion and case hardening during heating and to controll the final rater activity of 0.86 to 0.83 accompanying with a complete reduction of viable cells and good texture. In present study, changes in VBN, pH, total plate count, water activity, texture, the loss of available lysine, color indexes, TBA value, and the content of TI were determined to assess the quality stability and shelf-life of the product during the storage for 35 days at $5^{\circ}C\;and\;25^{\circ}C$, respectively. And the effect of vacuum sealing and hot water treatment before storage on the storage stability of product was also mentioned. As the product was vacuum packed in K-flex film bag, heat treated in boiling water for 6 minutes, and stored, water activity was maintained 0.86 to 0.84 for 35 days regardless of storage temperature, and the increase of total plate count was negligible in case of $5^{\circ}C$ storage while tended to gain slightly after 25 days at $25^{\circ}C$ storage. Changes in VBN was also minimum with an increase of 1.5 mg/100g at $5^{\circ}C$ and 7.0mg/100g at $25^{\circ}C$, but in case of unpacked sample, it was 24.5mg/100g at $5^{\circ}C$ and 42.4 mg/100g at $25^{\circ}C$ even after 7 days. In textural property hardness tended to increase after 28 days and folding test score was down to A or B from AA grade. The loss of available lysine was $7.5\%\;at\;5^{\circ}C$ and $17.0\%\;at\;25^{\circ}C$ but brown color was not deeply developed as the color index score indicated. TBA value was not increased at $5^{\circ}C$ while it tended to increase rapidly after 30 days at $25^{\circ}C$. Changes in TI content was not obvious except that it showed a tendency of increase at the end of storage as well as in the change of lysine and TBA value. It is concluded from the results that the quality of the product, pasteurized and water activity controlled by dielectric heating, and vacuum packed in K-flex film would be stable for more than 35 days at $5^{\circ}C$ and at least 25 days even at room temperature.

  • PDF