• Title/Summary/Keyword: Flat spring

Search Result 130, Processing Time 0.024 seconds

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

Seasonal Variation of Fish Catch Using a Fence Net in the Shallow Tidal Flat off Ganghwado, Korea (강화도 갯벌 천해의 건간망 어획 어류의 계절 변동)

  • HWANG Sun Wan;KIM Chong Kwan;LEE Tae Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.676-685
    • /
    • 2003
  • Seasonal variation of the fishery resource in the shallow waters of Ganghwado tidal flat was investigated using monthly collected samples with a fence net from June 1998 to May 1999. Thirty-six species were found including 27 fish species, 6 crustaceans, and 3 molluscs. Of the fish, Konosirus punctatus, Sardinella zunasi Liza haematocheila and Synechogobius hasta dominated in the number of individuals $(92.1\%)$ and in biomass $(94.5\%).$ A few number of resident species, such as L. haematocheila and S. hasta, were collected only during the cold months. As the water temperature increased in the spring, the adult migratory fish such as K. punctatus and S. zunasi, were collected. In the summer, the juvenile fish recruited in the shallow water showing a peak in fish abundance. The data suggested that they grew until late autumn before moving to deeper waters for over-wintering. The principal component analysis showed that the seasonal variation in species composition was principally determined by water temperature and/or water temperature related factors. The species composition of the fish assemblage in the study area suggested that these species are highly adapted to extreme seasonal temperature variation and high water turbidity.

Dynamic Analysis of Driving Mechanism for ALTS with High-Speed Transfer Characteristics (고속 전환특성을 가진 자동부하전환 개폐기의 구동메커니즘의 동적 해석)

  • Chung, Won-Sun;Kwon, Byung-Hee;Ahn, Kil-Young;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1530-1535
    • /
    • 2003
  • The automatic load transfer switch (ALTS) typically automatically transfers electrical loads from a normal electrical power source to an emergency electrical power source upon reduction or loss of normal power source voltage. It can also automatically re-transfer the load to the normal power source when the normal voltage has been restored within acceptable limits. The transfer operation of ALTS is accomplished by a spring-driven linkage mechanism. In this paper we build a dynamic model of driving mechanism for ALTS using ADAMS and checked the characteristics of the transfer operation. Finally we performed a detailed design of the driving mechanism through results of analysis and confirmed it to satisfy design requirements.

  • PDF

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

Comparative Evaluation of Indoor Temperature in Spring according to Sitting Orientation of Tower-Type Apartments (탑상형 아파트의 배치방향별 봄철 실내온도 비교평가)

  • Kim, Jun Hyun;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • It is usual for energy consumption in accordance with facing and sitting direction of tower-type apartments to be calculated by the official statistics or computer simulation. Previous studies for energy consumption appear to be very limited due to the dependence on flat type of apartment. Acknowledging these constraints, an empirical study for a tower type apartment was conducted to demonstrate how a on-site indoor temperature measurement in spring can be used to assist in estimating the total energy consumption in terms of facing and sitting orientation specific settings. The results indicate that maximum temperature difference in spring was identified as $1.16^{\circ}C$ between south and eastern direction. It is known that raising $1^{\circ}C$ indoor temperature require 7% more energy consumption than normal. The $1.16^{\circ}C$ difference means that sitting direction of tower type apartment is a crucial explanatory variable as unit of analysis for energy consumption. It was demonstrated that the indoor temperature could be used effectively as an indicator to estimate energy consumption among various sitting direction of tower type apartments. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making for facing and sitting orientation of tower type apartments.

Lattice-spring-based synthetic rock mass model calibration using response surface methodology

  • Mariam, Al-E'Bayat;Taghi, Sherizadeh;Dogukan, Guner;Mostafa, Asadizadeh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.529-543
    • /
    • 2022
  • The lattice-spring-based synthetic rock mass model (LS-SRM) technique has been extensively employed in large open-pit mining and underground projects in the last decade. Since the LS-SRM requires a complex and time-consuming calibration process, a robust approach was developed using the Response Surface Methodology (RSM) to optimize the calibration procedure. For this purpose, numerical models were designed using the Box-Behnken Design technique, and numerical simulations were performed under uniaxial and triaxial stress states. The model input parameters represented the models' micro-mechanical (lattice) properties and the macro-scale properties, including uniaxial compressive strength (UCS), elastic modulus, cohesion, and friction angle constitute the output parameters of the model. The results from RSM models indicate that the lattice UCS and lattice friction angle are the most influential parameters on the macro-scale UCS of the specimen. Moreover, lattice UCS and elastic modulus mainly control macro-scale cohesion. Lattice friction angle (flat joint fiction angle) and lattice elastic modulus affect the macro-scale friction angle. Model validation was performed using physical laboratory experiment results, ranging from weak to hard rock. The results indicated that the RSM model could be employed to calibrate LS-SRM numerical models without a trial-and-error process.

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

Spatial Distribution of Macrozoobenthos During Spring Season in the Estuarine Sandy Tidal Flat of Masan Bay, Korea (하구역 모래갯벌인 봉암갯벌(경남 마산)에 서식하는 대형저서동물의 봄철 공간분포)

  • Seo, Jin-Young;An, Soon-Mo;Choi, Jin-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • In this study, we investigated the spatial distribution of macrozoobenthos in the estuarine sandy flat, the Bongam tidal flat located in Masan Bay during March, 2004. A total 13 species were identified at 12 stations within the tidal flat. The mean density was $20,267\;ind./m^2$, and mean biomass was $228.1g/m^2$. Dominant species in the Bongam tidal flat were all polychaetes: Prionospio japonicus ($11,716\;ind./m^2$, 57.8%) and Polydora ligni ($3,929\;ind./m^2$, 19.4%) of spionoid polychaete, and Neanthes succinea ($3,425\;ind./m^2$, 16.9%) of nereid polychaete. The most dominant species, P. japonicus distributed evenly all stations in the tidal flat. But N. succinea showed high density at the upper area of the tidal flat. Species diversity index (H') was in the range of 0.6 to 1.2 which is relatively low due to the prominent of P. japonicus and few species richness at each station. The study area was divided into two station groups (group A and B) based on the cluster analysis and MDS ordination, and the spatial distribution of macrozoobenthos on the Bongam tidal flat seemed to be in the influence of exposure duration from tidal levels and specific geological topography.

Spatio-temporal microalgal and environmental variations of the Hajeonri tidal flat, Gochang, Korea (한국 고창군 하전 갯벌의 미세조류 및 환경의 시공간적 변화)

  • Chung, Sang Ok;Cho, Yoon-Sik;Choi, Yoon Seok;Jeung, Hee-Do;Song, Jae Hee;Han, Hyoung Kyun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.743-752
    • /
    • 2015
  • We studied the spatio-temporal microalgal (phytoplankton and benthic diatoms) and environmental changes of the Hajeonri intertidal zone from February to November 2014. Seawater and phytoplankton analysis were conducted all through the months. The species, composition and abundance of phytoplankton and environmental factors were measured. As a result, diatom was dominant among a total of 113 species identified. On a seasonal basis (Feb. May, Aug., Nov.), we carried out studies on benthic diatoms on the surface of the sediments and their habitats at nine stations on the transect line at Hajeonri at low tide. The grain of the surface sediments was mainly composed of sandy silt and sandy mud. Organic pollution level was low. Benthic microalgal biomass (chlorophyll ${\alpha}$) was high in the spring and summer. A total of 163 benthic diatom species were identified. Navicula sp.1 and Paralia sulcata were dominant over the study period. Five diatom species were observed both in water column and on surface sediment at the same time.