• Title/Summary/Keyword: Flat glass

Search Result 302, Processing Time 0.027 seconds

A STUDY ON THE BOND STRENGTHS OF LIGHT-CURING GLASS IONOMER CEMENTS TO DENTAL AMALGAM (광중합 Glass Ionomer Cement와 Amalgam의 결합강도에 관한 연구)

  • Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.357-364
    • /
    • 1996
  • The purpose of this study was to asses the shear bond strengths of 3 types of light-curing Glass Ionomer cement to dental amalgam with or without an intermediary agent. 60 amalgam adherent specimens were prepared and aged in water at $37^{\circ}C$ for 3 days. Before bonding, the amalgam surfaces were finished flat on 600-grit silicon carbide paper. 30 specimens among 60 were used for bonding in this condition, and the other 30 were covered with a thin layer of light-curing intermediary agent. Shear bond strengths were measured with universal testing machine (Instron, Model 4301) and statistically processed by ANOVA and t-test. On completion of bond test, the fracture surfaces were examined under light microscope so that the mode of bond failure could be assessed The results were as follows : 1. Bond strength of Fuji II LC group showed the hightest value and was followed by Vitremer, Vitrebond groups (p<0.05). 2. The bond strengths achieved without an intermediary agent were higher than those obtained with intermediary agent (p<0.05). 3. For the specimens bonded with intermediary agent, bond failures occured mostly at the agent-amalgam interface. So, the use of intermediary bonding agent was thought not recommendable at glass ionomer-amalgam interface.

  • PDF

Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System (BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

A study on properties of ZnO:Ga thin films fabricated by RF Magnetron sputtering (RF Magnetron sputtering으로 증착한 ZnO:Ga의 특성에 관한 연구)

  • Kim, H.S.;Kim, K.B.;Koo, B.K.;Park, K.Y.;Koo, K.W.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.953-956
    • /
    • 2003
  • Transparent conductive ZnO:Ga thin films were deposited on glass substrates using rf magnetron sputtering method for flat panel display. The ZnO:Ga films were preferentially oriented to c-axis (002) of on substrates. The surface morphology was smooth and had not porous whatever substrate temperature was. The electrical conductivity of the thin films were in the range of $1.6{\times}10^2{\sim}6.7{\times}10^3\;{\Omega}^{-1}cm^{-1}$ at the growth temperature from 50 to $400^{\circ}C$, whereas has a maximum at around $250^{\circ}C$. By combining of XRD and EXAFS, the crystallinity and grain size decreased with increasing substrate temperature corresponding to the reduction of the grain-boundary scattering. The optical transmittance of sputtered ZnO:Ga thin films had an improved about 86% in the UV-visible region.

  • PDF

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

Discharge Characteristics of Xe Plasma Flat Lamp for LCD Backlight According to Operating Voltage Pulse (LCD 백라이트용 Xe계 플라즈마 평판 램프의 구동 전압 Pulse의 조건에 따른 방전 특성 연구)

  • Kwon, Eun-Mi;Kim, Hyuk-Hwan;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.271-278
    • /
    • 2003
  • Conventional backlight for liquid crystal display (LCD) uses mercury which leads to environmental pollution. In this study, characteristics of AC coplanar type mercury-free plasma flat lamp have been studied. Pollution-free Xe-He is adopted as a discharge gas system. Since the Xe gas has a lower efficiency in generating vacuum ultraviolet (VUV) than mercury, the improvement of luminance and luminous efficiency in the Xe gas system is very important. The electrode, dielectric, and phosphor layers constituting lamp are formed on the bottom glass by the screen printing method. The effects of pulse shape, on-time, and pulse frequency on the luminance and luminous efficiency have been examined. For Xe(5%)-He gas, the lamp exhibits higher efficiency with sharper pulse shape, higher peak voltage, and shorter pulse on-time (up to 2 $\mu\textrm{s}$). Higher efficiency and lower consumption of power were obtained at 30 kHz than at 60 kHz. The collision of ion to bottom electrodes is a dominant factor to raise the lamp temperature. Therefore the high voltage and low current discharge system is necessary for reduction of the lamp temperature as well as for enhancement of the luminous efficiency.

Development of Small Flat Plate Type Cooling Device (소형의 평판형 냉각장치 개발)

  • Moon, Seok-Hwan;Hwang, Gunn;Kang, Seung-Youl;Cho, Kyoung-Ik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.614-619
    • /
    • 2010
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of a slimness of the devices, so it is not easy to find the optimal thermal management solution for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint of the applications. In the present study, the silicon flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. The normal isothermal characteristics created by vapor-liquid phase change was confirmed through the experimental study. The cooling device with 70 mm of total length showed 6.8 W of the heat transfer rate within the range of $4{\sim}5^{\circ}C/W$ of thermal resistance. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of the silicon and glass cooling device.

Electrical, Structural, Optical Properties of the AZO Transparent Conducting Oxide Layer for Application to Flat Panel Display (평판디스플레이 응용을 위한 AZO 투명전도막의 전기적, 구조적 및 광학적 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Park, Dong-Wha;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1976-1981
    • /
    • 2009
  • Transparent conducting aluminum-doped zinc oxide (AZO) thin films were deposited on Coming glass substrate using an Gun-type rf magnetron sputtering deposition technology. The AZO thin films were fabricated with an AZO ceramic target (Zn: 98wt.%, $Al_2O_3$: 2wt.%). The AZO thin films were deposited with various growth conditions such as the substrate temperature, oxygen pressure. X -ray diffraction (XRD), UV/visible spectroscope, atomic force microscope (AFM), and Hall effect measurement system were done in order to investigate the properties of the AZO thin films Among the AZO thin films prepared in this study, the one formed at conditions of the substrate temperature $100^{\circ}C$, Ar 50 sccm, $O_2$ 5 sccm and working pressure 5 motor showed the best properties of an electrical resistivity of $1.763{\times}10^{-4}\;[{\Omega}{\cdot}cm]$, a carrier concentration of $1.801{\times}10^{21}\;[cm^{-3}]$, and a carrier mobility of $19.66\;[cm^2/V{\cdot}S]$, which indicates that it could be used as a transparent electrode for thin film transistor and flat panel display applications.

ITO Thin Film Ablation Using KrF Excimer Laser and its Characteristics

  • Lee, Kyoung-Chel;Lee, Cheon;Le, Yong-Feng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.20-24
    • /
    • 2000
  • This study aimed to develop ITO(Indium Tim Oxide) tin films ablation with a pulsed type KrF excimer laser required for the electrode patterning application in flat panel display into small geometry on a large substrate are. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/㎠. And its value is much smaller than that using 3 .sup rd/ harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the ablated ITO is changed into dark brown due to increase of surface roughness and transformation of chemical composition by the laser light. The laser-irradiated regions were all found to be electrically isolating from the original surroundings. The XPS analysis showed that the relative surface concentration of Sn and In was essentially unchanged (In:Sn=5:1)after irradiating the KrF excimer laser. Using Al foil made by 2$\^$nd/ harmonic Na:YAG laser, the various ITO patterning is carried out.

  • PDF