• Title/Summary/Keyword: Flat Plate

Search Result 1,235, Processing Time 0.031 seconds

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate (관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Stiffness values and static analysis of flat plate structures

  • Unluoglu, Esref
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.427-437
    • /
    • 1998
  • Flat plate constructions are structural systems which are directly placed on columns without any beams. Various solution methods have been introduced for the solution of flat plate structures under horizontal and vertical loads. In most of these solution methods, models comprising of one column and one plate have been studied. In other solutions, however, co-behavior of two reciprocal columns has been investigated. In this study, interrelations of all the columns on one storey have been examined. At the end of the study structure consisting of nine columns and four plates has been chosen as a model. Then unit moment has been successively applied to each of these columns and unit moments carried over the other columns have been found. By working out solutions far plates and columns varying in ratio, carry-over factors have been found and these factors given in tables. In addition, fixed-end moment factors on the columns arising due to vertical load were also calculated. Then citing slope-deflection equations to which these results could be applied, some examples of moment and horizontal equilibrium equations have been given.

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate (GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석)

  • Kim, Min Sook;Hwang, Seung Yeon;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

Applications of Practical Analysis Scheme for Evaluating Effects of Over-Loads during Construction on Deflections of Flat Plate System (플랫 플레이트 시스템의 처짐에 대한 시공 중 과하중의 영향 평가를 위한 실용해석 기법의 적용)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • RC flat plate, which has no large flexural stiffness by boundary beams, may be governed by serviceability as well as strength condition. A construction sequence and its impact on distributions of construction loads among slabs tied by shores are decisive factors on immediate and long term performances of flat plate. The over-loading and tensile cracking in early-aged slabs significantly increase the deflection of flat plate system. In this study, for slab deflections, the practical analysis scheme using a linear analysis program is formulated with considering construction sequence and concrete cracking effects. The concept of the effective moment of inertia in calculating deflections of one-way bending member, that is presented in structural design codes, is extended to the finite element analysis of the two-way slab system of flat plates. Effects of over-loads during construction on deflections of flat plate system are analyzed by applying the proposed practical analysis scheme into the critical construction load conditions calculated from the simplified method.

Moment-Rotation Relationship and Effective Stiffness of Flat Plates under Lateral Load (횡하중을 받는 플랫플레이트의 모멘트-변형각 곡선과 유효강성)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.856-865
    • /
    • 2003
  • Current design provisions and guide for performance-based design do not accurately evaluate seismic performance of flat plate system. In the previous companion studies, parametric studies using nonlinear finite element analyses were performed to investigate behavior of the flat plate, and based on the numerical results, design methods that can predict the bending moment-carrying capacity and the corresponding deformability of the flat plate was developed. In the present study, a generalized moment-rotation relation of the flat plate was developed based on the previous studies and the numerical analyses. The proposed method was verified by the comparisons with existing experiments. In addition, the effective stiffness of the flat plate corresponding to 0.2 percent of lateral drift that is generally regarded as the serviceability limit was proposed, so as to evaluate conveniently deflection of the structure subject to wind load.