• Title/Summary/Keyword: Flashover rate

Search Result 44, Processing Time 0.02 seconds

The Electrical Characteristics of ZnO varistor for d.c. Arrester (직류 피뢰기용 ZnO 소자의 전기적 특성)

  • Kim, Seok-Sou;Choi, Ike-Sun;Cho, Han-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1106-1110
    • /
    • 2003
  • The electrical characteristics of $A{\sim}C's$ ZnO varistors fabricated according to variable sintering condition, which sintering temperature is $l130^{\circ}C$ and speeds of pusher are A: 2mm/min, B: 4mm/min, C: 6 mm/min, respectively, were investigated. The varistor voltage of $A{\sim}C's$ ZnO varistors sintered at $1130^{\circ}C$ increased in order A < B $A{\sim}C's$ ZnO varistors exhibited below 2mA at rated voltage. Lightning impulse residual voltage of A's ZnO varistor suited standard characteristics, which is 3.85kV at 2.5kA, 4.4kV at 5kA and 5.16kV at 10kA. After multi lightning impulse residual voltage test of A's ZnO varistor exhibited good discharge characteristics which ZnO varistor reveals no evidence of puncture, flashover, cracking in visual examination. After high current impulse test of A's ZnO varistor exhibited good discharge characteristics, which variation rate of residual voltage is 0.4% before and after test, and revealed no evidence.

  • PDF

A Development of ZnO Varistor for Railroad Vehicle d.c. Arrester (전철탑재형 직류피뢰기용 ZnO 바리스터의 개발)

  • Cho, I-Gon;Park, Choon-Hyun;Jung, Se-Young;Song, Tae-Kwon;Kim, Suk-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.552-556
    • /
    • 2002
  • The microstructure and electrical characteristics of A~C's ZnO varistors fabricated according to variable sintering condition, which sintering temperature is $1130^{\circ}C$ and speeds of pusher are A: 2mm/min, B: 4mm/min, C: 6mm/min, respectively, were investigated. In the microstructure, A~C's ZnO varist-ors fabricated variable sintering condition was consisted of ZnO grain(ZnO), spinel phase$(Zn_{2.33}Sb_{0.67}O_4)$ Bi-rich $phase(Bi_{2}O_{3})$, wholly. Varistor voltage of A~C's ZnO varistors sintered at $1130^{\circ}C$ increased in order A < B < C's ZnO varistors. C's ZnO varistor exhibited good characteristics that nonlinear exponent is 31.70. Leakage current of A~C's ZnO varistors exhibited below 2mA at rated voltage. Lightning impulse residual voltage of A's ZnO varistor suited standard characteristics, which is 3.85kV at 2.5kA, 4.4kV at 5kA and 5.16kV at 10kA. After multi lightning impulse residual voltage test of A's ZnO varistor exhibited good discharge characteristics which ZnO varistor reveals no evidence of puncture, flashover, cracking in visual examination. After high current impulse test of A's ZnO varistor exhibited good discharge characteristics, which variation rate of residual voltage is 0.4% before and after test, and revealed no evidence.

  • PDF

Investigation of an Apartment Fire - Site Surveys and Burn Tests for Estimation of the Progress on Initial Fire Spread - (공동주택의 화재조사 - 현장조사 및 연소실험에 의한 초기 화재확대과정 추정 -)

  • Nam, Dong-Gun;Hasemi, Yuji
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.120-129
    • /
    • 2009
  • Identification of the exact cause of a building fire is generally difficult, because the source and initially ignited objects are often severely damaged or even lost during the early stages of the fire. We made an experimental attempt to reasonably estimate the burning during the very early stages of a fire, and identify its source and causes. The case we studied was an apartment fire, which occurred in Tokyo, in July 2002. The fire was extinguished just after flashover, and the on-site investigations suggested the fire started from the TV and TV stand, which had been damaged so severely that it was difficult to conclude that the TV was the ultimate cause of the fire, simply from the on-site investigation. We conducted a series of burn tests using a TV and other products identical to those actually used in the apartment. Tests were set-up and procedures were carefully studied to recreate the conditions of the articles that remained, and of the room itself. The tests demonstrated that the conditions in the apartment could be recreated only when the fire started inside the TV and came into close contact with dresser.

A Study on the Microstructure and Electrical Characteristics of ZnO Varistor for d.c. Arrester (소결 조건 변화에 따른 직류 피뢰기용 ZnO 바리스터의 미세구조 및 전기적 성질에 관한 연구)

  • Kim, Seok-Sou;Choi, Ike-Sun;Park, Tae-Gon;Cho, I-Gon;Park, Choon-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.683-689
    • /
    • 2004
  • The microstructure and electrical characteristics of A ∼ C's ZnO varistors fabricated according to variable sintering condition, which sintering temperature was 1130 $^{\circ}C$ and speeds of pusher were A: 2 mm/min, B: 4 mm/min, C: 6 mm/min, respectively, were investigated. The experimental results obtained from this study were summarized as follows: The sintering density of A ∼C's ZnO varistors sintered at 1130 $^{\circ}C$ were decreased by sintering keep time to shorten, such as A: 9hour, B: 4.5hour and C: 3hour. A's ZnO varistor exhibited good densification nearly 98 % of theory density. In the microstructure, A∼C's ZnO varistors fabricated variable sintering condition was consisted of ZnO grain(ZnO), spinel phase(Z $n_{2.33}$S $b_{0.67}$ $O_4$), Bi-rich phasc(B $i_2$ $O_3$), wholly. Varistor voltage of A∼C's ZnO varistors sintered at 1130 $^{\circ}C$ increased in order A