• Title/Summary/Keyword: Flash Fire

Search Result 198, Processing Time 0.023 seconds

Estimation of Flash Points of Pure Flammable Liquids -I. Alcohols- (순수 가연성액쳬의 인화점추산 -I. 알코올-)

  • 하동명;이수경;김문갑
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 1993
  • The flash points of flammable liquids are a fundamental and important property relative to fire and explosion hazards. A new estimation method, based on statistics (mutiple regression analysis), is being developed for the prediction of flash points of pure flammable liquids by means of computer simulation. This method has been applied to alcohol liquids. The proposed method has proved to be the general method for predicting the flash points of alcohol liquids.

  • PDF

The Consequence Analysis for Fire Accidents by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 화재사고의 영향평가)

  • 윤대건;이헌창;함병호;조지훈;김태옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.3-15
    • /
    • 1998
  • The consequence analysis for jet and flash fire accidents by the continuous release of butane vapor was performed and effects of process variables on consequences were analyzed in standard conditions. For the continuous release (87.8 kg/s) of butane vapor at 8m elevated height in the debutanizing process of the naphtha cracking plant operating at 877 kPa, 346.75 K, we found that for the jet fire accident, shape and size of the flame could be predicted and thermal radiation estimated by API model at 200m distance from release point was 1.5kW/$m^2$, and that for the flash fire accident, effect range was 11.2~120.2m. Also, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, effects of operating pressures on XUFL were smaller(about 1/10) than those on XLFL for the flash fire accident.

  • PDF

Study on the Risk of Flammability & Combustion of Liquid Mixtures such as Alcohols (알코올류 등의 액체 혼합물에 대한 인화 및 연소 위험성에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.634-647
    • /
    • 2019
  • Purpose: Currently, many chemicals are used in industrial and real life, and many substances are used in the form of a single substance, but most of them are used in the form of a mixture, and there is a need for a criterion for judging the danger of these substances. Method: Therefore, this study aims to confirm the risk criteria of the mixture through experimental studies on flammable mixtures in order to secure the effectiveness of the details of the existing Dangerous Goods Safety Management Act angerous Goods Judgment Criteria and to ensure the reliability and reproducibility of the dangerous goods judgment. Result: Experimental results show that alcohol flash point is mixed with water, which is a non-flammable liquid. Similar flash point trends occurred around 60% on an alcohol basis. In addition, in the case of flammable-combustible mixtures, there was little change in flash point if the flash point difference of the two materials was not large, and if the flash point difference of the two materials was low, the flash point tended to increase with the increase of the high flash point material. Conclusion: In the future, the test results may provide reference data on the experimental criteria for the flammable liquids that are cracked at the fire site.

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole (아니솔의 연소특성치의 측정에 의한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.20-24
    • /
    • 2015
  • For the safe handling of anisole, this study was investigated the explosion limits of anisole in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of Anisole by using closed-cup tester were experimented in $39^{\circ}C$ and $42^{\circ}C$. The lower flash points of Anisole by using open cup tester were experimented in $50^{\circ}C$ and $54^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for Anisole. The AIT of Anisole was experimented as $390^{\circ}C$. The lower explosion limit (LEL) by the measured the lower flash point for Anisole were calculated as 1.07 Vol%.

The Investigation of Combustible Hazard by Measurement of Flash Point and Autoignition Temperature of n-Dodecane (노말도데칸의 인화점과 최소발화온도 측정에 의한 연소위험성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • For the safe handling of n-dodecane, the explosion limits were investigated and the lower flash points and AITs (autoignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of n-dodecanee recommended 0.6 Vol.% and 4.7 Vol.%, respectively. The lower flash points of n-dodecane by using closed-cup tester were experimented $77^{\circ}$ and $80^{\circ}C$. The lower flash points of n-dodecane by using open cup tester were experimented $84^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-dodecane. The experimental AIT of n-dodecane was $222^{\circ}C$.

Estimation of the Flash Point for n-Pentanol + n-Propanol and n-Pentanol + n-Heptanol Systems by Multiple Regression Analysis (다중회귀분석법을 이용한 n-Pentanol + n-Propanol계 및 n-Pentanol + n-Heptanol계의 인화점 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.

Flash Point Measurement of n-Propanol+n-Hexanol and n-Butanol+n-Hexanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 n-Propanol+n-Hexanol계와 n-Butanol+n-Hexanol계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2019
  • Flash point is the important indicator to determine fire and explosion hazards of liquid solutions. In this study, flash points of n-propanol+n-hexanol and n-butanol+n-hexanol systems were obtained by Seta flash tester. The methods based on UNIFAC equation and multiple regression analysis were used to calculate flash point. The calculated flash point was compared with the experimental flash point. Absolute average errors of flash points calculated by UNIFAC equation are $2.9^{\circ}C$ and $0.6^{\circ}C$ for n-propanol+n-hexanol and n-butanol+n-hexanol, respectively. Absolute average errors of flash points calculated by multiple regression analysis are $0.5^{\circ}C$ and $0.2^{\circ}C$ for n-propanol+ n-hexanol and n-butanol+n-hexanol, respectively. As can be seen from AAE, the values calculated by multiple regression analysis are noticed to be better than the values by the method based on UNIFAC eauation.

The Prediction and Measurement of Combustible Properties for Bromobenzene (브로모벤젠의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.21-25
    • /
    • 2015
  • The usage of the correct combustion characteristics of the treated substance for the safety of the process is critical. For the safe handling of bromobenzene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of bromobenzene was experimented. And, the lower explosion limit of bromobenzene was calculated by using the lower flash point obtained in the experiment. The flash points of bromobenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $50^{\circ}C$, respectively. The flash points of bromobenzene by using the Tag and Cleveland automatic open cup testers are measured $56^{\circ}C$ and $64^{\circ}C$. The AIT of bromobenzene by ASTM 659E tester was measured as $573^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 1.63 Vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Prediction of the Fire and Explosion Properties of Isoamyl alcohol (이소아밀알코올의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dongmyeong
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.34-40
    • /
    • 2016
  • For the safe handling of isoamyl alcohol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of isoamyl alcohol was experimented. And, the lower explosion limit of isoamyl alcohol was calculated by using the lower flash point obtained in the experiment. The flash points of isoamyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of isoamyl alcohol by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$and $45^{\circ}C$. The AIT of isoamyl alcohol by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.