• Title/Summary/Keyword: Flash Fire

Search Result 198, Processing Time 0.021 seconds

The Measurement and Estimation of the Lower Flash Points for tert-Pentanol + Propionic Acid and p-Xylene + Propionic Acid Systems Using Open-Cup Apparatus (개방식 장치를 이용한 tert-Pentanol + Propionic Acid 및 p-Xylene + Propionic Acid 계의 하부인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.161-166
    • /
    • 2009
  • The lower flash points for the tert-pentanol + propionic acid and p-xylene + propionic acid systems were measured by Tag open-cup apparatus. The experimental data were compared with the values calculated by the Raoult's law, the van Laar equation and the NRTL equation. The calculated values based on the van Laar and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the van Laar and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for non-ideal solution such as the tert-pentanol + propionic acid and p-xylene + propionic acid systems. The predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the van Laar equation.

A STUDY FOR FIRE EXTENSION MECHANISM BETWEEN FLOORS IN A RESIDENTIAL BUILDING WITH NUMERICAL MODELING (주거형 빌딩의 층간 화염전이 화재해석 모델링)

  • Ahn, Chan-Sol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.512-517
    • /
    • 2011
  • This study is intended for validation of numerical modeling of a residential building which is made to simulate a phenomenon of fire extension from floor to floor. A common residential building which has the area of 80m2 each floor and some combustibles were chosen for numerical modeling. The combustible models were verified through comparing results of numerical simulations and real fire tests. For computational analysis, the Fire Dynamics Simulator was used with Large Eddy Simulation model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

  • PDF

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

The Measurement and Investigation of Fire and Explosion Properties for Acetone (아세톤의 화재 및 폭발 특성치 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.30-35
    • /
    • 2010
  • For the safe handling of acetone, the flash point, the explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. And the AIT for acetone were experimented. By using the literatures data, the lower and upper explosion limits of acetone recommended 2.5 vol% and 13.0 vol%, respectively. In this study, the lower flash points of acetone recommended $-20^{\circ}C$. This study was determined relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for acetone, and the experimental AIT of acetone was $565^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of acetone is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.

The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis (라울의 법칙과 다중회귀분석법에 의한 n-Nonane+n-Decane+n-Tridecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • The flash point is one of the most important properties to characterize fire and explosion hazard of flammable liquid mixture. In this paper, the flash points of ternary liquid mixture, n-nonane+n-decane+n-tridecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and multiple regression analysis. The absolute average errors(AAE) of the results calculated by Raoult's law is $0.6^{\circ}C$. The absolute average errors of the results calculated by multiple regression analysis is $0.4^{\circ}C$. As can be seen from AAE, the calculated values based on multiple regresstion analysis were found to be better than those based on Raoult's law.

Measurement and Prediction of Combustuion Properties of di-n-Buthylamine (디노말부틸아민의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, combustion characteristics were measured by selecting di-n-buthylamine, which is widely used as an emulsifier, insecticide, additive, rubber vulcanization accelerator, corrosion inhibitor, and raw material for dye production. The flash point of the di-n-buthylamine was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the di-n-buthylamine was measured by ASTM 659E. The explosion limits of the di-n-buthylamine was calculated using the measured flash points by Setaflash tester. The flash point of the di-n-buthylamine by using Setaflash and Pensky-Martens closed-cup testers were experimented at 38 ℃ and 43 ℃, respectively. The flash points of the di-n-buthylamine by Tag and Cleveland open cup testers were experimented at 48 ℃. The AIT of the di-n-buthylamine was experimented at 247 ℃. The LEL and UEL calculated by using lower and upper flash points of Setaflash tester were calculated at 0.69 vol% and 7.7 vol%, respectively. The measurement of the flash point measurement and the calculation method of the explosion limit prediction presented in this study can be used to study the fire and explosion characteristics of the other combustible liquids.

Development of Probabilistic Risk Analysis Model on Railroad System - Its Application to Tunnel Fire Risk Analysis (철도시스템의 확률론적 위험평가 모델 개발 연구 - 터널화재 위험도 평가에의 적용)

  • Kwak Sang Log;Wang Jong Bae;Hong Seon Ho;Kim Sang Am
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.265-270
    • /
    • 2003
  • Though the probability of tunnel fire accident is very low, but critical fatalities are expected when it occurred. In this study the effect of critical safety parameters on tunnel fire accident are examined using probabilistic technique. Fire detection time, smoke spread velocity, passenger escape velocity, flash-over time, and emergency service arrival time are considered. In order to estimate the uncertainties of input parameters Monte Carlo simulation are used, and fatalities for each assumed accident scenarios are obtained as results. For the efficiency of iterative calculation PRA(Probabilistic Risk Analysis) code is developed in this study. As a result fire detection have large effect.

  • PDF

A Full-scale Fire Test of an Apartment House (공동주택 실물화재 실험)

  • Kim, Myung-Bae;Han, Yong-Shik;Choi, Byung-Il;Do, Kyu-Hyung;Lee, Yu-Whan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.415-422
    • /
    • 2009
  • 국내 저층 공동주택 화재시의 화재 전파 경로와 상층으로의 화재 전파를 살펴보기 위하여 4층 공동 주택을 대상으로 실물화재 실험을 수행하였다. 화재는 3층 주택에서 발화하는 것으로 하였고, 초기 화원은 주방에서 과열된 식용유에 발화되어 발생하는 것으로 하였다. 주택 내부 가연물은 일반 가정의 필수 가연물을 모두 포함 하였다. 내부 화재 성상을 확인하기 위하여 가시화, 주요부의 온도측정, 산소농도 측정을 수행하였다. 실험 결과 초기 화원의 발화 시간, 화재 층 내부 각 구획으로의 전파시간, 전역화재 발생시간을 파악하였으며, 상층으로의 연소확대 경로를 파악하였다.

  • PDF