• Title/Summary/Keyword: Flared intersection

Search Result 2, Processing Time 0.019 seconds

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

A Numerical Analysis on the Determination of Shock Loss Coefficient at Flared Intersection of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 확폭구간에서의 충격손실 계수 결정을 위한 수치해석 연구)

  • Park, Yo Han;Lee, Seung Jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2018
  • The purpose of this study is to analyze ventilation design factor for network-type double-deck road tunnel that have been developed actively around the world. A numerical analysis was carried out through computational fluid dynamics (CFD) to derive shock loss coefficient that occurs due to the change in cross sectional area at both merging section and diverging section. The model used for the numerical analysis is real-scale model and the reliability of the result is secured by comparing with the coefficient of the previous studies. As a result of this study, shock loss coefficient was calculated depending on the change in cross-sectional area ratio and was higher than the result of previous studies in case of both merging section and diverging section. It is considered that the characteristics of the geometrical structure of network-type double-deck road tunnel have a great impact on shock loss coefficient. Therefore, the result of this study is expected to be helpful for more accurate ventilation design of network-type double-deck road tunnel.