• 제목/요약/키워드: Flank Wear

검색결과 161건 처리시간 0.027초

공구마모에 따른 음향방출신호 특성 연구 (A Study on the Characteristics of AE Signals by Tool wear)

  • 조종래;원종식;정윤교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.95-100
    • /
    • 1995
  • Automatic monitoring of cutting process is one of the most important technology for increasing the stability and the reliability of unmanned manufacturing system. In this study, basic methods which use the acoustic emission (AE) signals and sutting forces proposed to monitor tool wear (flank wear) quantitatively. Fist, in order to detect flank wear, it was investigated influence of cutting conditions, that is, cutting velocity, feed and depth of cut, on AE signals (AErems) and cutting forces. Furthermore,the relationship flank wear between AErems and cutting forces were discussed.

  • PDF

CBM공구의 마모에 관한 실험적 연구 (Experimental investigation on the wear mechanism of CBN cutting tools)

  • 권오철;이종찬
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.86-97
    • /
    • 1994
  • An experimental investigation is reported on the wear mechanism of CBN cutting tools. The cutting experiments were conducted on a lathe equipped with a tool dynamometer for cutting force measurement. The investigation of wear mechanism was executed by observing the worn tools using tool microscope and scanning electron microscope. Results indicate that the flank wear occurs dominantly by abrasive wear mode and the crater wear by adhesive wear mode. The results also indicate that the width of flank wear is closely related with the passive component of cutting force.

  • PDF

절삭력의 동적 성분을 이용한 플랭크마모의 평가(I) (Flank Wear Estimation Using Dynamic Cutting Force(l))

  • Kwon, Y.K.;Oh, S.H.;Seo, N.S.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.115-121
    • /
    • 1997
  • The in-process detection of the tool wear is one of the most important technologies in completely auto- matic operation of machine tool. In this research, using the tools having flank wear, the dynamic compo- nent of cutting forces is considered to be available for identifying the cutting process. In order to investi- gate this relation in detail, the cutting forces in turning of workpiece made of aluminum were measured by dynamometer of piezoelectric type, and the dynamic components of cutting force were analyzed. The fre- quency analysis, probability density analysis and RMS analysis of the dynamic components were carried out independently. Through the experiments, the characteristics of the tool system have a large effect on the dynamic component of cutting forces. As a result, it is shown that the dynamic cutting force was able to detect flank wear accurately.

  • PDF

선삭에서 컴퓨터비젼을 이용한 플랭크 마모 측정에 관한 연구 (A study on the measurement of flank wear by computer vision in turning)

  • 김영일;유봉환
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.168-174
    • /
    • 1993
  • A new digital image processing method for measuring of the flank wear of cutting tool is presented. The method is based on computer vision technology in which the tool is illuminated by two halogen lamps and the wear zone is visualized using a CCD camera. The image is converted into digital pixel and processed to detect the wearland width. As a conclusion, it has been proved that the average wearland area and mzximum peak values of the flank wear width can monitored effectively to a measuring resolution of 0.01mm.

  • PDF

엔드밀링 가동시 절삭력 신호와 공구마모에 대한 실험적 연구 (An Experimental Study on Cutting Force Signal and Tool Wear in End Milling)

  • 박철기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.30-34
    • /
    • 1998
  • In-process monitoring of cutting conditions and tool wear is important for improving productivity. This paper is concerned with on-line monitoring of tool wear and cutting force in end milling operation. The experimental study deals with the relations between flank wear and cutting force signal. Tool wear is detected by monitoring of cutting signal. A monitoring procedure is shown in this paper. The influence of flank wear on cutting signal activity was examined. The results are presented in the form of graphs. The analysis of the cutting signal and flank wear curves provides useful indicators of unacceptable wear development in the tool.

  • PDF

금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측 (The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material)

  • 조재성;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF

이미지 프로세싱을 위한 드릴 마모측정에 관한 연구

  • 양승배;김영일;유봉환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.298-301
    • /
    • 1992
  • A digital image processing approach has been adopted to measure the flank wear area, which is very difficult to measure using conventional techniques. Automatic thresholding of the gray-level values of an image is very useful in automated analysis of image. 1-D entropy thresholding technique is used for image processing and analysis of the flank wear area. This strategy provides more information about drill wear conditions and should therefore have a higher reliability than previous methods. This study calulated quantitatively the flank were area of drill by computer program.

선사가공에 절삭력을 이용한 공구마멸의 감지 (Detection of Tool Wear using Cutting Force Measurement in Turning)

  • 윤재웅;이권용;이수철;최종근
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2001
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system A major topic relevant to metal-cutting operations is monitoring toll wear, which affects process efficiency and product quality, and implementing automatic toll replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. The static com-ponents of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force dis-parities are defined in this paper, and the relationships between normalized disparity and flank were are established. Final-ly, artificial neural network is used to learn these relationships and detect tool wear. According to proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

유리섬유강화수지의 절삭특성 (On cutting characteristics of glass fiber reinforced plastic)

  • 최수준
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.78-83
    • /
    • 1988
  • The purpose of this study is to understand the cutting characteristics of glass-fiber rein- forced plastic (GFRP) by investigating the variation of cutting force and surface roughness, depending on the amount fo flank wear and cutting conditions. And a Taylor type tool life equation is derived using the regression analysis. The present study reveals that, 1. Taylor's eqquation can be applicable to GFRP nd the constants n (0.170-0.175) and C (53.7- 64.4) are smaller than those in cutting of steel. 2. Principal cutting force increases sharply with the increase of feed rate, but feed force and radial force are almost constant. This result is quite different from that of metal cutting. 3. Cutting forces ($F_P, \;F_Q, \;F_R$) increase with the increase of flank wear, and feed force especially increases sharply with the increase of flank wear. 4. Surface roughness changes very much along the circumference of the workpiece and the amount of flank wear has almost no effect on surface roughness.

  • PDF

열처리한 합금공구강의 절삭에서 공구파손의 특성 (Fracture Characteristics of Cutting Tools in Machining of Hardened Alloy Steel)

  • 노상래;안상옥
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.199-205
    • /
    • 1994
  • The fracture characteristics and tool life of ceramics and WC, CBN cutting tool when turning heat treated steel STD11($H_RC$ 60) were investigated experimentally to clarify the machinability and optimum tool materials in cutting of difficult-to-cut material with high hardness. Forthermore, the behaviors of the tool wear and failure were examined with regard to cutting force. The hardened steel wore the cutting tool edge rapidily and increased the cutting forces, especially radial force. The tool was worn by the abrasive action. Flank Weat of $Al_2O_3-TiC$ ceramic and WC tool become relatively large and CBN & $Al_2O_3$, ceramic tool had a long life among the tool materials tested. The tool fracture patterns were just like minor cutting wear, flank wear, crater wear, notch wear, chipping. Flank wear rate was accelerated by occurrence of chipping. During the proceeding of machining, it was possible to foresee the catastrophic fracture of tool by abrupt increase of radial force.

  • PDF