• Title/Summary/Keyword: Flanging

Search Result 41, Processing Time 0.021 seconds

Effect of Lip Shape on the Hole Flangeability of High Strength Steel Sheets (고강도 열연재의 홀 플랜징시 립 형상이 플랜정성에 미치는 효과)

  • Kim, Jeong-Un;Kim, Bong-Jun;Mun, Yeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.147-152
    • /
    • 2002
  • Effect of lip shape on the hole flangeability of high strength steel sheets is investigated. Circular plates of various hole sizes are tested and the variation of lip length as well as the variation of thickness on the sectional views of the finished lip were studied. The conventional hole flanging process is limited to a certain limit hole diameter below which failure will ensue during the hole expansion. The intention of this work is to examine the effect of lip shape on the flangeability of TRIP steel and Ferrite-Bainite duplex steel and find out major parameters which can affect flanging shape of high strength hot rolled steels. Over the ranges of conditions investigated, the minimum hole diameter of F+B steel is better than TRIP steel. while, the lip-shape accuracy of TRIP steel is better than that of F+B steel. although the tensile strength and elongation of %P steel are superior than those of Ferrite-Bainite duplex steel, the flangeability is found to be not so strongly sensitive to the tensile properties but sensitive to displacement on the circumferential direction of hole edge.

A Parametric Study of the Hemming Process by Finite Element Analysis (유한요소해석에 의한 헤밍 공정 변수연구)

  • Kim, Hyung-Jong;Choi, Won-Mog;Lim, Jae-Kyu;Park, Chun-Dal;Lee, Woo-Hong;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

Study on the Evaluation and Prediction of Micro-Defects in the Hemming Process (헤밍 공정에서의 미세 결함 평가 및 예측에 관한 연구)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.533-540
    • /
    • 2005
  • The hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having greater influence on the outward appearance of cars rather than on their performance. The hem quality can be quantitatively defined by the hemming defects including turn-down/up, warp and roll-in/out. However, it is difficult to evaluate and predict the hem quality through an experimental measurement or a numerical calculation since the size of defects is very small. This study aims to precisely evaluate the hemming defects, especially turn-down and roll-in, through numerical and experimental approaches and to investigate the influence of process parameters on the hem quality, focused on how to simulate the same conditions as in the experiment by the finite element analysis (FEA). The FEA results on the turn-down and roll-in obtained from a model composed of the optimum-sized elements, including a spring element linked to the flanging pad, and given the double master contact condition between the inner and outer panels, had a good correlation with the experimental data. It is thought possible to make an early estimate of the hem quality in a practical automotive design by applying the methodology proposed in this study.

Prediction of Turn-down and Roll-in in Hemming Processes through the Comparison between FEA and Experiment (유한요소해석과 실험의 비교를 통한 헤밍 공정에서의 턴다운 및 롤인 결함 예측)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.101-105
    • /
    • 2005
  • Hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having a great influence on the outward appearance of them. The hem quality can be quantitatively defined by the hemming defects including turn-down, warp and roll-in. However, it is difficult to evaluate and predict the hem quality through the experimental measurement or the numerical calculation since the size of defects is very small. This study is focused on how to simulate in the finite element analysis (FEA) the same conditions as in the experiment. The FEA result on turn-down, that was obtained from a finite element model including the spring element linked to the flanging pad, had a good correlation with the experimental data. It was found that the radius of curvature of the flange deeply affects the final hem quality and therefore high rigidity of forming tools and tight assembling tolerance are highly recommended. An over-stroke of the main hemming punch is also proposed to reduce the turn-down.

  • PDF

Optimization of Stretch Flange Forming of Laser Welded Tailored Blank (레이저 용접 테일러드 블랭크 신장 플랜지의 성형 최적화)

  • 인정제;안덕찬
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.283-293
    • /
    • 2001
  • Laser welded tailored blanks(TB) are increasingly used in automotive parts. Among these, TB side panel has forming difficulties in stretch flanging areas such as front and center pillar lower region. To avoid splits in the stretch flanging areas, Proper design of blank shape and drawbeads are essential In this study, the forming simulaton is carried out to investigate the influences of blank shape and drawbeads on stretch flange formability of different thickness TB. And an optimization procedure including the effects of both the blank design and drawbeads is presented. The optimization procedure proposed in this study is expected to be effectively used in blank and die design of TB side panel.

  • PDF

Study on the Forming of Tailor Welded T-Section (레이저 용접 판재의 T형 단면에의 적용 및 성형성 연구)

  • 김헌영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Wrinkles and shape distortions are generated during the forming of B-pillar(or center pillar) which is a component of the automobile side-frame. The stretch flanging modes at the joining part of the B-pillar and the roof-rail or the side-still give rise to forming problems when taior-welded blanks are applied to the side-frames. The authors simplified B-pillar lower part to T shaped section to investigate the forming behaviors. Three of die step locations and two of blank types were tested to show the effects of weld line locations and edge conditions on he forming of tailor welded blanks. The heights of body wrinkles and the strain distribution in the stretch flanged area were measured and compared.

  • PDF

Trimming Line Design using Progressive Development Method and One Step FEM (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 판넬 트리밍 라인 설계)

  • Song, Y.J.;Chung, W.J.;Park, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.68-71
    • /
    • 2006
  • Traditional section-based method develops blank along section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results for regions with out-of-section motion. In this study, new fast method to find feasible trimming line is proposed. One step FEM is used to analyze the flanging and incremental development method is proposed to handle bad-shaped mesh and undercut part. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. The proposed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

  • PDF

A Study on the Springback of Side Rear Member (Side Rear Member의 스프링백 연구)

  • Chung W. J.;Hong S. H.;Park C. D.;Choi D. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.144-147
    • /
    • 2002
  • In this study, springback analysis of side rear member is carried out. Side rear member is one of the parts which shows severe springback problems. Forming, trimming, flanging and springback stages can be analyzed successively. From forming analysis, we identified the possible spots in which tearing may occur and can prevent failure. In springback analysis we used the boundary conditions same as applied to the blank on the checker so that the computational result can be compared with experimental one. Form .the comparison, springback analysis can yield relatively good results in a qualitative sense. However, in order to get good deformation result quantitatively, there still remains unsettled tasks in the forming analysis with very small die radius. It is found that we have to develop the element with better bending characteristics and precise contact treatment.

  • PDF

A Study on the Design of Hemming Process for Automotive Body Panels (자동차 패널의 헤밍 공정 설계에 관한 연구)

  • 안덕찬;이경돈;인정제;김권희
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.624-630
    • /
    • 2000
  • Typical automotive opening parts, i. e. hood trunk lid and door, are made through the press operations such as drawing, trimming, flanging, and hemming. The dimensional accuracy of stamped panels is mainly dependent on the drawing operation. However, the gap between outer panels and opening parts, which is important to the appearance quality of the assembled body, is directly influenced by the flanging and hemming operation. In this study, the relation between the design parameters of the hemming operation and the defect of roll-in is shown. The effects of some design parameters on the gap are examined using CAE. furthermore, the simulated results of the hemmed part of tailgate comer are shown and discussed.

  • PDF

Evaluation of Role Flangeability of Steel Sheet with respect to the Role Processing Condition (가공조건에 따른 강판의 구멍확장성 평가)

  • Lee, J.S.;Kim, Y.K.;Huh, H.;Kim, H.K.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.359-362
    • /
    • 2006
  • In this paper, hole expanding tests are carried out in order to identify the effect of the hole process condition on the hole expanding ratio. Specimens with two different hole conditions are prepared: one is produced with punching process; and the other is reamed after punching to get smoother hole surface. The experimental results show that the facture mechanism and the hole expanding ratio are quite different with respect to the hole condition. The hole expanding ratio of a punched specimen is much smaller than that of a reamed one due to the difference of surface roughness and internal defects. For the thorough investigation of those effects, tensile tests of a specimen with a hole are performed. The fracture strain is obtained with different hole conditions and a finite element analysis of the hole flanging process carried out. The experimental results are confirmed and reevaluated by finite element analysis of the hole flanging process with ductile fracture criterion proposed.

  • PDF