• Title/Summary/Keyword: Flammable substance

Search Result 19, Processing Time 0.018 seconds

A Study on the Method to Avoid the Gas Group IIC Equipment of Explosion Proof Electrical Equipment Adjacent to the Source of Release of Hydrogen Handling Facility (수소 취급설비의 누출원에 인접한 방폭전기기기의 가스그룹 IIC 기기 회피 방안에 관한 연구)

  • BYUN, YOON SUP
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.383-390
    • /
    • 2022
  • Appropriate explosion proof electrical equipment should be installed in hazardous areas. In areas where hydrogen is handled, explosion proof electrical equipment adjacent to the hydrogen handing facility must be reviewed for selection of gas group IIC (or IIB+H2) equipment. When selecting explosion proof electrical equipment for the flammable substance handling facility in areas where hydrogen and flammable substance are handled, the method to avoid gas group IIC (or IIB+H2) equipment has been suggested by using the operating pressure of the hydrogen handling facility. When the operating pressure of the outdoor hydrogen handling facility is 1.065 MPa or less, it has been confirmed that there is no need to install gas group IIC (or IIB+H2) equipment for the flammable substance handling facility adjacent to the hydrogen handling facility. And the method of selecting explosion proof electrical equipment for the flammable substance handling facility has been suggested as a flowchart, so it will be able to be utilized when selecting appropriate explosion proof electrical equipment.

Measurement and Prediction of Autoignition Temperature(AIT) of Flammable Substances - Methanol and Ethanol - (가연성물질의 자연발화온도 측정 및 예측 - 메탄올과 에탄올 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2004
  • Flammable substances are frequently used chemical industry processes. An accurate knowledge of the ALTs(Autoignition Temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, ignition delay. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for methanol and ethanol. The A.A.P.E.(Average Absolute Percent Error) and the A.A.D.(Average Absolute Deviation) of the experimental and the calculated delay times by the AITs for methanol were 14.59 and 1.76 respectively. Also the A.A.P.E. and the A.A.D. of the experimental and the calculated delay times by the ATIs for ethanol were 8.33 and 0.88.

A Study on the Measurement and Comparison(IEC 60079-32-2) of Flammable Liquid Conductivity (인화성 액체 도전율에 관한 측정 및 비교(IEC 60079-32-2) 연구)

  • Lee, Dong Hoon;Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.22-31
    • /
    • 2019
  • The flammable liquid conductivity is an important factor in determining the generation of electrostatic in fire and explosion hazardous areas, so it is necessary to study the physical properties of flammable liquids. In particular, the relevant liquid conductivity in the process of handling flammable liquids in relation to the risk assessment and risk control in fire and explosion hazard areas, such as chemical plants, is classified as a main evaluation item according to the IEC standard, and it is necessary to have flammable liquid conductivity measuring devices and related data are required depending on the handling conditions of the material, such as temperature and mixing ratio for preventing the fire and explosion related to electrostatic. In addition, IEC 60079-32-2 [Explosive Atmospheres-Part 32-2 (Electrostatic hazards-Tests)] refers to the measuring device standard and the conductivity of a single substance. It was concluded that there is no measurement data according to the handling conditions such as mixing ratio of flammable liquid and temperature together with the use and measurement examples. We have developed the measurement reliability by improving the structure, material and measurement method of measuring device by referring to the IEC standard. We have developed a measurement device that is developed and manufactured by itself. The test results of flammable liquid conductivity measurement and the data of the NFPA 77 (Recommended Practice on Static Electricity) Annex B Table B.2 Static Electric Characteristic of Liquids were compared and verified by conducting the conductivity measurement of the flammable liquid handled in the fire and explosion hazardous place by using Measuring / Data Acquisition / Processing / PC Communication. It will contribute to the prevention of static electricity related disaster by taking preliminary measures for fire and explosion prevention by providing technical guidance for static electricity risk assessment and risk control through flammable liquid conductivity measurement experiment. In addition, based on the experimental results, it is possible to create a big data base by constructing electrostatic physical characteristic data of flammable liquids by process and material. Also, it is analyzed that it will contribute to the foundation composition for adding the specific information of conductivity of flammable liquid to the physical and chemical characteristics of MSDS.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture (노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • The autoignition temperature (AIT) of a substance is the lowest temperature at which the vapor ignites spontaneously from the heat of the environment. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures in the process. This study measured the AITs of n-butanol+p-xylene mixture by using ASTM E659 apparatus. The AITs of n-butanol and p-xylene which constituted binary system were $340^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-butanol+p-xylene mixture were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Study on the Risk of Flammability & Combustion of Liquid Mixtures such as Alcohols (알코올류 등의 액체 혼합물에 대한 인화 및 연소 위험성에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.634-647
    • /
    • 2019
  • Purpose: Currently, many chemicals are used in industrial and real life, and many substances are used in the form of a single substance, but most of them are used in the form of a mixture, and there is a need for a criterion for judging the danger of these substances. Method: Therefore, this study aims to confirm the risk criteria of the mixture through experimental studies on flammable mixtures in order to secure the effectiveness of the details of the existing Dangerous Goods Safety Management Act angerous Goods Judgment Criteria and to ensure the reliability and reproducibility of the dangerous goods judgment. Result: Experimental results show that alcohol flash point is mixed with water, which is a non-flammable liquid. Similar flash point trends occurred around 60% on an alcohol basis. In addition, in the case of flammable-combustible mixtures, there was little change in flash point if the flash point difference of the two materials was not large, and if the flash point difference of the two materials was low, the flash point tended to increase with the increase of the high flash point material. Conclusion: In the future, the test results may provide reference data on the experimental criteria for the flammable liquids that are cracked at the fire site.

A Study on the Harmonization of Poisonous Substance Used in Paint Manufacture (도료제조업종에서 취급하는 유독물의 GHS 분류 통일화 방안 연구)

  • Lee, Jong Han;Hong, Mun Ki;Kim, Hyun Ji;Park, Sang Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.156-163
    • /
    • 2013
  • Objectives: Numerous poisonous substances are used in paint manufacture, but there are differences in the results of GHS classification between the Ministry of Labor(MOL) and the Ministry of Environment(MOE). Therefore, paint manufacturers suffer confusion as to how to classify a given chemical's risk and hazard level. This paper was designed to compare the classification results of chemicals by the MOL and the MOE and suggest a harmonization measure. Methods: After selecting 25 poisonous substances from among the organic solvents, pigments, and additives used in paint manufacturer, the GHS classification results by MOL and MOE were compared. Further the logic and classification of the GHS proposed by each Ministry was analyzed. Based on the derived results, a harmonization plan was proposed. Results: Based on the GHS classification of the poisonous substances, the concordance is 10.0-66.6 %, excluded flammable liquid. The GHS classifications differed based on the suggested building blocks, the sub-classification method used, the references(data sources), and subjective judgment of the experts from each Ministry. In order to pursue the harmonization plan, cooperation is demanded from the MOL and MOE.

Analysis of Fire Patterns of Flammable Liquids for Oil Flow Tests of Compartment Fires with Reduced Simulation (축소 모의된 구획 화재의 흘림 실험에 대한 인화성 액체의 화재 패턴 해석)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.43-48
    • /
    • 2014
  • The purpose of this study is to analyze the flame propagation speed, radiation range, diffusion pattern and combustion completion time of a fire by filling a divided space with single combustible substance. It was found that the flame propagation speed was the fastest (0.2 s) for kerosene and the lowest (82.1 s) for alcohol. In the case of paint thinner, it took 19.0 s for the flame to reach its peak at the fastest speed after ignition while in the case of alcohol, it took 138.6 s for the flame to reach its peak at the lowest speed. In the case of the combustion of 200 ml of flammable liquids, the combustion completion time was 79.9 s for paint thinner, which is the shortest, 135 s for gasoline, 170 s for kerosene, 231.4 s for diesel and 337.0 s for alcohol. In addition, when flammable liquids are combusted, the lower part of the flame is governed by laminar flow pattern and the upper part of the flame showed turbulence pattern. In the case of a test performed for bean oil, it could be seen that if the fire source was removed, the flame was automatically extinguished without further combustion and that white smoke was generated due to incomplete combustion.

The Influence of Pressure, Temperature, and Addition of CO2 on the Explosion Risk of Propylene used in Industrial Processes

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.610-617
    • /
    • 2020
  • In process installations, chemicals operate at high temperature and high pressure. Propylene is used as a basic raw material for manufacturing synthetic materials in the petrochemical industry; However, it is a flammable substance and explosive in the gaseous state. Thus, caution is needed when handling propylene. To prevent explosions, an inert gas, carbon dioxide, was used and the changes in the extent of explosion due to changes in pressure and oxygen concentration at 25 ℃, 100 ℃, and 200 ℃ were measured. At constant temperature, the increase in explosive pressure and the rates of the explosive pressure were observed to rise as the pressure was augmented. Moreover, as the oxygen concentration decreased, the maximum explosive pressure decreased. At 25 ℃ and oxygen concentration of 21%, as the pressure increased from 1.0 barg to 2.5 bar, the gas deflagration index (Kg) increased significantly from 4.71 barg·m/s to 18.83 barg·m/s.

Measurement and Prediction of the Combustible Properties of Cumene (큐멘(Cumene)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.465-469
    • /
    • 2016
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of cumene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of cumene was experimented. And, the lower explosion limit of cumene was calculated by using the lower flash point obtained in the experiment. The flash points of cumene by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of cumene by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$ and $45^{\circ}C$. The AIT of cumene by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.