• Title/Summary/Keyword: Flammable gas

Search Result 200, Processing Time 0.033 seconds

A Study on the Safety Improvement in Incineration System from the Case Study of Acrylic acid manufacturing process Accident (아크릴산 제조공정 사고사례를 통한 소각 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.52-58
    • /
    • 2012
  • Recently, waste gas incineration is increasing due to strong environmental regulatory system in Korea. These incinerating facilities are usually connected with the top of the storage tank through pipeline and incinerate off gas with the flame. Therefore, the flame originated from these facilities is likely to move back into pipeline and might cause an explosion of the storage tank. Accordingly, the purpose of this study is to suggest the preventive measures and the way to improve the safety of these incineration systems through the cause analysis of a major industrial accident occurred in a acrylic acid manufacturing process in Korea. As a result of the study, the preventive measures are suggested as follows. (1) Air or inert gas inflow facilities should be well designed to dilute flammable gases into air or inert gas sufficiently before the blower is restarted in order to prevent the explosion (2) It is needed for the detonation-type flame arresters to be installed on the top of the storage tanks. (3) In case of using the deflagration-type flame arresters, it is necessary to install a rupture disk before the arresters, or blow off the flame outside tanks by connecting the tank top and the incinerator with hood-type pipe. (4) TDR should be installed to be restarted automatically after the momentary power failure.

Numerical Study on Characteristics of Gas Leakage in an Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내부의 가스 누출 특성에 대한 수치해석 연구)

  • Bang, Joo Won;Sung, Kun Hyuk;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.594-600
    • /
    • 2016
  • The present study numerically investigated the gas leakage characteristics in a simplified underground combined cycle power plant. The effect of obstacles near a crack location on the gas concentration in the confined space was analyzed by using the lower flammable limit (LFL) of methane gas. When the jet flow was close to the vertical walls, the longitudinal leakage distance increased by about 60% (when an obstacles was present) compared to the case without any obstacle, because these obstacles prevented transverse flows. In addition, when an air filter was installed near to the trajectory of the gas flow, the longitudinal leakage distance was similar to the distance between the crack and obstacle, whereas the transverse leakage distance increased up to 8 times compared to the case without any obstacle. As the jet flow impacts on the obstacle and changes its direction, the gas flows recirculate. Therefore, it is necessary to consider the effect of the structure and facility locations on the trajectory of the jet flow to propose an accident prevention system in confined spaces.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-182
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

  • PDF

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition (메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2006
  • Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

Evaluation of the Fatigue Strength and the Mechanical Properties for Cargo Containment System in LNG Ship (LNG선박용 내조시스템 소재의 기계적 특성 및 피로강도 평가)

  • Shim, Hee-Jin;Kim, Min-Tea;Yoon, In-Su;Kim, Yung-Kyun;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1-6
    • /
    • 2007
  • The membrane type LNG(Liquefied Natural Gas) cargo containment system is a special design structure for the large deformation behavior at LNG temperature$(-162^{\circ}C)$. The design of membrane is required great confidence so that membrane can plat role in the tightness of flammable fluid storing. LNG cargo containment is loaded and unloaded LNG between twice and five times in a week. During this process, the membrane has large deformation behavior due to the variation of temperature and pressure to the self weight. In this study, the evaluation of the fatigue strength of membrane is very important to determine the design life of LNG storage tank and to evaluate the mechanical properties at the LNG temperature. Also, in the view point of large deformation, the evaluation method is applied conservatively $\epsilon-N_f$ curve of SUS 304L.

  • PDF

Evaluation of Peak Overpressure and Impulse Induced by Explosion (폭발에 따른 최대과압 및 충격량 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.28-34
    • /
    • 2016
  • Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.

Field Control Type Electrostatic Charge Neutralizer (전계 제어형 정전하 중화장치)

  • Jeong, Seok-Hwan;Lee, Dae-Hui;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.469-474
    • /
    • 1999
  • Methods and systems to remove static electricity are requested in the field of industry because the static electricity causes a flammable gas explosion or fire and a reduction of production rate in manufacturing semiconductor devices and so on. This paper is a basic study about a new structure of electrode system to control the quantities of generated ions and to solve the problem of dust attachment to needle electrode. In addition, a new type field controlled electrostatic charge neutralizer was proposed, and it could control the electric field in the end of the needle electrode by controlling the voltage of the third electrode around the tip of the needle electrode. As aresult, it was possible to control the quantities of generated ion by controlling the electric field in the needle electrode with the third electrode, which shows the possibilities to solve the nonequilibrium of generated ions in ac power source and the problem of the dust in the needle electrode.

  • PDF

The Ion Generation Characteristics of Charge Neutralizer Applied a Pulse Voltage (펄스전압을 적용한 전하중화장치의 이온발생 특성)

  • Moon, Jae-Duk;Chung, Suk-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.140-146
    • /
    • 1998
  • Methods and systems to remove static electricity are requested necessarily because the static electricity causes a flammable gas explosion, a fire, reduction of production rate in manufacturing VLSI semiconductor device and so on. In this paper, abrasion and dust contaminant of needle electrode are studied experimentally. And, frequencies and pulse durations of a high frequency pulse source were controlled effectively to minimize the abrasion of needle electrode and control generated numbers of ions. As a result, it is verified experimentally that the ion generation of charge neutralizer increases by using a high frequency pulse source.

  • PDF