• 제목/요약/키워드: Flammability limits

검색결과 29건 처리시간 0.023초

고온 채널 내부 에지화염의 소염 한계 영역에서의 화염 안정화 및 구조에 관한 실험적 연구 (Experimental Study on the Edge Flame Stabilization and its Structure Nearby Quenching Limits in a High Temperature Channel)

  • 이민정;김남일
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2010
  • Edge flames have been interested as a basic structure that is concerned to flame stabilization and re-ignition of non-premixed flames. The edge flame consists of a lean premixed flame, a rich premixed flame, and a diffusion flame. In order to investigate fundamental structures of the edge flames at the conditions near the flammability limits, edge flames were stabilized within a heated narrow channel. Highly diluted partially premixed methane was used, and the flow rates of air and the partially premixed mixture were controlled. Various flame behaviors, including a transition between ordinary edge flames and premixed flames, were observed. Flame stabilization characteristics were examined as well. All flame stabilization conditions in this study showed a similar trend: characteristic time scales were inversely proportional to the equivalence ratio defined at the burner inlet. Finally, an interesting flame structure having a weak diffusion branch enveloped by a closed premixed branch was found near the flammability limits even in a fuel-air mixing layer. This structure was named as a "flame-drop" and the importance of this structure was first suggested.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

음향가진과 보염기형상이 확산화염의 특성에 미치는 영향 (Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics)

  • 전충환;장영준
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 - (A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions -)

  • 하동명
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

좁은 채널 내부의 대향류 화염 거동에 관한 실험적 연구 (An Experimental Study on the Flame Behavior of Opposed Flow Flames in Narrow Channels)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-12
    • /
    • 2012
  • In this study, opposed flow combustion was re-visited in a narrow channel. Various flame behaviors were observed. Due to the confined structure of the combustor in this study, flame structures at very narrow strain rate could be stabilized and their characteristics were investigated. This study will be helpful to understand overall flame behavior of non-premixed flame in a narrow combustion space, and will also be useful to develop small combustors.

  • PDF

상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구 (A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames)

  • 문창우;박정;권오붕;배대석;김정수
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

가열된 원통형보염기에 의한 희박 예혼합화염의 보염;열유속의 역할 (Stabilization of Lean Premixed Flames by a Heated Cylindrical Rod;The Role of Heat Flux)

  • 서동규;이원남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1372-1377
    • /
    • 2003
  • The stabilization of propane/air lean premixed flames by a heated cylindrical rod is investigated experimentally. The flame stability limits, heat flux, surface temperatures, equivalence ratios, and mixture velocities are measured in order to understand the role of heat flux or surface temperature on the flame stabilization of lean premixed flames. The flame stability limits are lowered by a heated cylindrical rod and extended even below the flammability limit of propane/air mixture when sufficient heat flux is provided. The flame stability limit decreases with the increase of heat flux or surface temperature and decreases with the higher mixture velocity. The diameter of cylindrical rod, however, dose not significantly affect the flame stability limit. The laminar flame speed has been measured for ultra lean propane/air premixed flames. The flame stabilization by a heated cylindrical rod provides the useful tool for the measurement of flame speed under very fuel-lean conditions.

  • PDF

파라핀족탄화수소의 폭발하한계의 온도의존성 예측 (Prediction of Temperature Dependence of Lower Explosive Limits for Paraffinic Hydrocarbons)

  • 하동명
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2000
  • The aim of this study is to investigate the temperature dependence of the lower explosive limit(LEL) at elevated temperature. The temperature dependence of the lower explosive limit is one of the significant indices of flammability and combustibility. By using the literature data, the new equations for predicting the temperature dependence of the lower explosive limits for paraffinic hydrocarbons are proposed. The values calculated by the proposed equations were a good agreement with the literature data. It is hoped eventually that this proposed equations will support the use of the prediction for the lower explosive limit and the flash points of the flammable mixtures.

  • PDF

연소열을 이용한 가연성 혼합물의 폭발한계 예측 (Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion)

  • 하동명
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2006
  • 폭발한계는 가연성물질의 화재 및 폭발 위험성을 결정하기 위해 사용되는 중요한 연소 특성치 가운데 하나이다. 폭발한계는 상대 연소에 따라 가연성물질을 구분하는데 사용된다. 이런 구분은 가연성물질의 안전한 취급, 처리, 수송을 위해서 중요하다. 본 연구에서는 가연성혼합물의 구성하는 각 순수성분의 연소열과 기상 조성을 이용하여 폭발한계를 예측하였다. 제시된 방법론에 의한 계산값은 적은 오차범위에서 문헌값과 일치하였다. 따라서 제시된 결과로부터 가연성혼합물의 폭발특성치 예측 방법과 다른 가연성혼합물의 폭발한계 예측에 폭넓게 적용되기를 기대한다.

  • PDF

수소의 특성 및 로켓 추진제로서의 고려사항 (Characteristics of Hydrogen and Considerations as a Rocket Propellant)

  • 임하영;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.23-26
    • /
    • 2009
  • 수소의 일반적인 특성과 온도 변화에 따른 ortho-수소와 para-수소의 비율에 대하여 살펴보았다. 수소의 독특한 특성인 넓은 연소 영역, 낮은 점화 에너지, 낮은 최대역전온도 및 수소 취성을 소개하였다. 예냉과 팽창 엔진을 사용하는 액체 수소 제조 방법과 촉매를 이용한 ortho-para 변환을 살펴보았으며, 액체로켓 추진제로서의 특성과 고려해야 할 사항들을 검토하였다.

  • PDF