• Title/Summary/Keyword: Flammability level

Search Result 14, Processing Time 0.029 seconds

Flammability Characteristics of Unsaturated Polyesters for FRP (FRP용 불포화폴리에스터 수지들의 연소 특성 연구)

  • 최원종
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • The thermal behavior and the flammability characteristics of four different unsaturated polyester resins were studied by performing a series of thermal analysis experiments and laboratory scale fire tests. The results of TGA and DSC reveals that the vinylester type resins have superior thermal performances when compared to the isophthalic type resins. The vinylester type resins formed a network shaped char surface after the thermal decomposition up to 55$0^{\circ}C$. Consequently, the vinylester type resings have shown lower value of burning rate than that of iso type resins. Due to the high level of flammability and toxic smoke emission, the appropriate flame retardant system should be applied to the unsaturated polyester resings.

  • PDF

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료의 분무 연소특성에 관한 실험적 연구)

  • Park, Min-Chul;Kim, Dong-Il;Oh, Sang-Hun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • An experimental study has been carried on high-preheated temperature air combustion. The flames with high-preheated temperature air combustion turned out to be both temporally and spatially much more stable and homogeneous than these with room-temperature combustion air. The global flame feature showed a range of flame colors (yellow, blue, blurish-green) according to the flame conditions. A low level of NOx along with low level of CO has been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on the preheated temperature and the oxygen concentration of air.

  • PDF

The Investigation of Accidental Case for LNG Terminal (LNG 생산기지의 사고사례 조사)

  • Ma, Y.W.;Lee, S.R.;Yoon, K.B.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.47-51
    • /
    • 2006
  • Safety issues for LNG(Liquified Natural Gas) terminal or LNG tank involve various concerns such as production/transportation at cryogenic temperature of $-160^{\circ}C$, large volume of handling, flammability and explosion risk. Hence, in designing an LNG terminal rigid safety criteria and mandatory requirements are unavoidable. Since known cases of LNG related accident are very few, careful study and root cause analysis of them are very important and provide precious information to increase safety level of the LNG terminal. In this paper most key accident cases were gathered and analysed to understand fundamental safety issues of LNG terminal to prevent further accident.

  • PDF

A Study on the safety measures for hydrogen cooling system of 500MW class thermal power plant (500MW급 화력발전소 수소냉각시스템의 안전대책)

  • Kim, Soon-Gi;Yuk, Hyun-Dai;Ka, Chool-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • This paper provided a counter measures against the troubles and accidents that are likely to take place in the power plant using hydrogen gas as a coolant for the cooling system of the generator. Because of the extremely wide flammability limits of hydrogen in comparison to the other flammable gases, the safety measures against the hydrogen accidents is very important to ensure the normal operation of electric-power facility. This study's purpose was a presentation of standard model of safety management of hydrogen equipments in the coal firing power plant such as following items: 1) providing the technical prevention manual of the hydrogen explosions and hydrogen fires occurring in the cooling system of power generator; 2) the selection of explosion-proof equipments in terms of the risk level of operating environment; 3) the establishment of regulations and counter measures, such as the incorporation of gas leakage alarm device, for preventing the accidents from arising; 4) the establishment of safety management system to ensure the normal operation of the power plant.

  • PDF

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

Characteristics of Sandwich Panels and Indoor Composite Materials (샌드위치 패널 및 내장재 특성 연구)

  • 허완수;이상원;김장엽;이종호
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper, the sandwich panel composites consisting of core material and face sheet were studied to evaluate the mechanical properties, noise level and fire resistance including flammability, smoke, and toxicity. Four types of sandwich panel were prepared using various kinds of panel and honeycomb materials. It was observed that Al honeycomb/Al skin composite materials had the excellent flatwise tensile strength and edgewise compressive strength compared with other types of composites. The flatwise compressive strength and flexural strength of Nomex honeycomb/Al skin composite were higher than those of other composites. PMI form/Al skin composite showed the higher core shear strength and facing bending strength. From the experimental results of flame resistance tests, it can be said that the phenol based skin composite has the excellent flame retardation properties, which are similar to those of the commercial skin composites.

  • PDF

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.