• Title/Summary/Keyword: Flame-flame interactions

Search Result 44, Processing Time 0.022 seconds

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Experimental Study on Flame Structure and Temperature Characteristics in a Lean Premixed Model Gas Turbine Combustor

  • Lee Jong Ho;Jeon Chung Hwan;Chang Young June;Park Chul Woong;Hahn Jae Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1366-1377
    • /
    • 2005
  • Experimental study was carried out in an atmospheric pressure, laboratory-scale dump combustor showing features of combustion instabilities. Flame structure and heat release rates were obtained from OH emission spectroscopy. Qualitative comparisons were made between line-integrated OH chemiluminescence image and Abel-transformed one. Local Rayleigh index distributions were also examined. Mean temperature, normalized standard deviation and temperature fluctuations were measured by coherent anti-Stokes Raman spectroscopy (CARS). To see the periodic behavior of oscillating flames, phase-resolved measurements were performed with respect to the pressure wave in the combustor. Results on system damping and driving characteristics were provided as a function of equivalence ratio. It also could be observed that phase resolved temperatures have been changed in a well-defined manner, while its difference between maximum and minimum reached up to 280K. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.

Toxicity of Organophosphorus Flame Retardants (OPFRs) and Their Mixtures in Aliivibrio fischeri and Human Hepatocyte HepG2 (인체 간세포주 HepG2 및 발광박테리아를 활용한 유기인계 난연제와 그 혼합물의 독성 스크리닝)

  • Sunmi Kim;Kyounghee Kang;Jiyun Kim;Minju Na;Jiwon Choi
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Background: Organophosphorus flame retardants (OPFRs) are a group of chemical substances used in building materials and plastic products to suppress or mitigate the combustion of materials. Although OPFRs are generally used in mixed form, information on their mixture toxicity is quite scarce. Objectives: This study aims to elucidate the toxicity and determine the types of interaction (e.g., synergistic, additive, and antagonistic effect) of OPFRs mixtures. Methods: Nine organophosphorus flame retardants, including TEHP (tris(2-ethylhexyl) phosphate) and TDCPP (tris(1,3-dichloro-2-propyl) phosphate), were selected based on indoor dust measurement data in South Korea. Nine OPFRs were exposed to the luminescent bacteria Aliivibrio fischeri for 30 minutes and the human hepatocyte cell line HepG2 for 48 hours. Chemicals with significant toxicity were only used for mixture toxicity tests in HepG2. In addition, the observed ECx values were compared with the predicted toxicity values in the CA (concentration addition) prediction model, and the MDR (model deviation ratio) was calculated to determine the type of interaction. Results: Only four chemicals showed significant toxicity in the luminescent bacteria assays. However, EC50 values were derived for seven out of nine OPFRs in the HepG2 assays. In the HepG2 assays, the highest to lowest EC50 were in the order of the molecular weight of the target chemicals. In the further mixture tests, most binary mixtures show additive interactions except for the two combinations that have TPhP (triphenyl phosphate), i.e., TPhP and TDCPP, and TPhP and TBOEP (tris(2-butoxyethyl) phosphate). Conclusions: Our data shows OPFR mixtures usually have additivity; however, more research is needed to find out the reason for the synergistic effect of TPhP. Also, the mixture experimental dataset can be used as a training and validation set for developing the mixture toxicity prediction model as a further step.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (II) - Combustion Analysis - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (II) - 연소 분석 -)

  • Kwon, Soon Tae;Park, Chanjun;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.743-752
    • /
    • 2013
  • This is the second paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the combustion process on the basis of pressure measurements. The results show that the bimodal peak pressure phenomenon, which is caused by the interaction of the heat release and the heat transfer, is more apparent as the mixtures are more favorable to combustion, and the magnitudes of the pressures depend on the unburned fraction. In addition, there exist four main inflection points during heat release owing to variations in the heat transfer area related to flame propagation from the ignition point. Furthermore, the number of inflection points increases as the mixture quality worsens because of the extended burn duration. Consequently, the sophisticated interactions between the heat transfer area changing pattern due to flame propagation and transfer duration might cause very peculiar heat release patterns.

A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor (연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구)

  • Kook, J.J.;Park, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Influence of Organomodified Nanoclay on the Mechanical and Flammability behavior of Jute Fabric/Vinyl Ester Nanocomposites

  • Latif, M.;Prabhakar, M.N.;Nam, Gi-Beop;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • Organo-montmorillonite (OMMT) has attracted much attention for fiber-reinforced polymer composites as a filler material due to high aspect ratio and low charge density. The present study focused on the fabrication of nanocomposites using Vinyl ester and Jute fabric as matrix and reinforcement respectively. The OMMT was uniformly dispersed in vinyl ester resin at 1, 2 and 3 wt%, loading through high speed mechanical stirrer at room temperature and further nanocomposites were manufactured through vacuum assisted resin infusion (VARI) technique. Effects of OMMT on the mechanical properties of vinyl ester/Jute composites were carefully investigated through tensile, bending and Izod impact tests, which revealed significant improvement in mechanical properties. The morphology of the nanocomposites after tensile test was investigated by SEM which affirmed that OMMT filled nanocomposites has improved interactions with the host matrix than the pure composites. Based on the nature and flame retardancy mechanism, the OMMT slightly improved the flammability property which was clearly explained by horizontal burning test.

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Numerical simulation on propagation of hydrocarbon flame in a deformable tube (변형하는 가스 이송관 내에서 전파하는 탄화수소화염의 수치 해석 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.304-308
    • /
    • 2012
  • This paper presents a numerical investigation on propagation of hydrocarbon (ethylene-air mixture) detonation in a deformable copper tube. In this study, we deal with interactions of multi-materials, gas and solid. In gas phase, the model consists of the reactive compressible Navier-Stokes equations and one step chemical reaction. Also we use Inviscid Euler equations in solid. In order to the interface tracking and the determination of boundary values, our model handle level-set and ghost fluid method. Through the numerical simulation results, we identify generations of expansion waves and interferences by the wall deformation. In addition, we predict the minimum copper tube thickness that ensures safety under an incident detonation.

  • PDF