• 제목/요약/키워드: Flame standoff ratio

검색결과 4건 처리시간 0.022초

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향 (Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Methanol 연료 액적의 연소 특성에 관한 연구 (Study on the Combustion Characteristics of Methanol Fuel Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

A Study on the Distortion Caused by Spot Heating with Air Cooling

  • Shin S. B.;Youn J. G.
    • International Journal of Korean Welding Society
    • /
    • 제5권1호
    • /
    • pp.35-43
    • /
    • 2005
  • This paper deals with the optimum condition for spot heating to correct the thin buckled panel caused by welding. Heat input models for each flame torch tip (500, 800, 2000) with standoff were establish using FEA to evaluate the temperature distribution of the heated plate and verified by experiment. With the heat input models developed for each torch tip, the effect of heating variables including ramp ratio(R) and standoff on the radial shrinkage and angular distortion was identified using FEA. Based on the results, the proper conditions of spot heating with air cooling were established. The amount and distribution of the radial shrinkage by spot heating were formulated as the function of heating variables and in-plane rigidity of the plate.

  • PDF

곡가공을 위한 선상 가열 특성에 따른 변형 거동에 관한 연구 (Effects of Line Heating Variables for forming the Curved Plate on the Behavior of Distortion)

  • 신상범;이동주;김경규;윤중근
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.291-293
    • /
    • 2005
  • The purpose of this study is to evaluate the effects of line heating variables for forming the curved plate on the behavior of distortion using FEA and experiment. The optimum mixed ratio and standoff for flame heating was established under the heating conditions given in this study. With the heating condition, the predictive equation of angular distortion and transverse shrinkage was established using FEA and verified by comparing the predicted results and experimental results.

  • PDF