• Title/Summary/Keyword: Flame soot

Search Result 205, Processing Time 0.025 seconds

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.

A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames (정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames (다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성)

  • Yoon, S.S.;Lee, S.M.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.137-142
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene, even though the propene diffusion flame produces more PAHs and soot than that of propane and ethane. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained by propargyl radical directly dehydrogenated from ethane (or propane).

  • PDF

Modeling for Soot Formation Coupled with Detailed Chemistry in Laminar Pressurized Non-premixed Flames (층류 고압 비예혼합 화염에서 상세화학반응과 결합된 매연입자 생성 모델링)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.139-140
    • /
    • 2012
  • In laminar non-premixed flame situation, the flamelet model is not suitable for simulating slow processor like soot and radiation. Thus in this study, we overcome this limitation by using the transient flamelet model. Also, for soot formation on laminar non-premixed flame, transient flamelet coupled with two-equation soot model has been adopted due to its inherent advantages in terms of accuracy and availability. Based on numerical results, the detailed discussion has been made for the precise structure and soot formation processes in the pressurized methane air flames.

  • PDF

Measurments of 2-D Image Soot Distribution in Late Combustion Stage Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity (레이저 탄성산란법, 여기적열법, 자발광을 이용한 가시화 디젤엔진의 후기연소의 2차원 soot 분포 측정)

  • Noh, S.M.;Won, Y.H.;Park, J.G.;Choi, I.Y.;Chun, K.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.162-167
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D imaging soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage.

  • PDF

Nano-Soot Particle Formation in Inverse Diffusion Flames (인버스 확산화염에서의 나노 수트 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.19-26
    • /
    • 2003
  • Experimental measurements of flame structure and soot characteristics were performed for ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

  • PDF

Measurements of sooting in single droplet combustion under the normal-gravity condition (정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정)

  • Lee, Gyeong-Uk;Lee, Chang-Eon;O, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).

Experimental and Computational Studies on Particle Behavior in High Temperature Gas with the Various Temperatures of a Solid Wall (고체의 벽면온도에 따른 고온가스 내의 입자거동에 대한 실험 및 수치해석 연구)

  • Choi, Jae-Hyuk;Lee, Ki-Young;Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Hyun-Kue;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.403-412
    • /
    • 2006
  • The effect of a wall temperature on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. The fuel for the flames was an ethylene ($C_2H_4$). The surrounding oxygen concentration was 35% with surrounding air temperatures of $T_a=600K$. In the study, three different wall temperatures. $T_w$=300, 600, 800K, were selected as major test conditions. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results showed that the maximum soot volume fractions at $T_w$=300, 800 K were $8.8{\times}10^{-6},\;9.2{\times}10^{-6}$, respectively. However, amount of soot deposition on wall surface was decreased because of lower temperature gradient near the wall with increasing wall temperature. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results from the numerical simulation successfully predicted the differences in the motion of soot particles by different wall temperature near the burner surface and are in good agreement with observed soot behavior that is, the 'soot line', in microgravity.

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF

A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures (고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구)

  • 배명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF