• Title/Summary/Keyword: Flame shape

Search Result 242, Processing Time 0.026 seconds

Combustion Characteristics and Criterion of Quenching Condition in Micro Combustor Parameterized by Initial Pressure and Fuel in the Combustor (초기 압력과 연료특성에 따른 마이크로 연소기 내에서의 연소 특성 및 소염 조건 변화)

  • Na, Han-Bee;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.55-62
    • /
    • 2005
  • Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

Combustion Characteristics Based on Injector Shape of Supersonic Combustor (초음속 연소기의 인젝터 형상에 따른 연소특성)

  • Jin, Sangwook;Choi, Hojin;Lee, Hyung Ju;Byun, Jong-Ryul;Bae, Juhyun;Park, Dongchang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.76-87
    • /
    • 2019
  • A direct connected test was conducted for a supersonic combustor with a cavity-type flame holder. Liquid hydro-carbon fuel was injected in different types of injectors: inclined and aeroramp injectors, for the flow condition of Mach 4 at an altitude of 20 km. The static pressure on the combustor wall along the axis and the total pressure at the exit of combustor were measured to analyze the combustion characteristics at various fuel flow rates.

An Experimental Study on the Flashback and Re-ignition Structure with a V-gutter type Flameholder (V-gutter형 보염기에서 발생하는 화염의 역화 및 재점화 구조에 관한 실험적 연구)

  • Jeong, Chan-Yeong;Kim, Tae-Sung;Song, Jin-Kwan;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.603-607
    • /
    • 2011
  • Structure of flashback and reignition occurring near flameholder was experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with cross section of $40{\times}40mm$ and City Nature Gas(CNG) were used as fuel. Measurements of chemiluminescence with high speed camera was used for visualization of flame structure. In the lean case, flashback distance depend on equivalent ratio. New flame occurred at the front tip of flameholder when flashback. Flashback flame moved toward downstream direction of combustor because mixture flow velocity had increased, and then re-ignition was caused by entering flow into recirculation zone that is formed behind the flameholder.

  • PDF

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

A Study on Two-Dimensional Forming of Ship Hull Plate by Geometrical Approach (곡가공 공정에서 기하학적 접근법에 의한 2차원 성형에 관한 연구)

  • Seong, Woo-Jae;Ahn, Jun-Su;Kim, Hyun-Uk;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2009
  • In shipyard, plate forming is widely used to form the ship hull plate in various shapes. Line heating method by using a flame torch is one of the major shipbuilding processes carried out by skilled workers. Since the forming characteristics depend upon their experiences in manual forming, there are much variations between products and difficulties in communication between engineers and workers. Hence, it needs to develop an automatic forming system which can not only reduce the working time and rework costs but also improve the working environment and hull forming productivity. One of the final goals of plate forming automation is to form a target shape from the initial plate automatically. For automated plate forming, it is required to determine where and how to heat on the plate. To realize this procedure, the inverse problem should be first solved and the effect of curvature shape formed at the heating path should be investigated. In this study, the inverse problem was solved by geometrical approach using the relationship between bending angle and radius of curvature of the curved shape. In addition, experiments of two-dimensional plate forming were performed with the distance-based method considering the curved bending with curvature. The result of the formed shape agreed considerably well with the target shape.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF