• Title/Summary/Keyword: Flame residence time

Search Result 77, Processing Time 0.021 seconds

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Effect of the CO Tube insert for Emission Characteristics in a Compact Combustion Chamber (컴팩트 연소실 내 CO튜브 삽입에 따른 오염물질 배출특성)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Jang, Gi-Hyun;Lee, Chang-Eon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.66-71
    • /
    • 2010
  • This study was the effect of CO tube insert for NOx and CO emission characteristics in a compact combustion chamber. In detail, NOx and CO emission characteristics with changing of distance due to inserting the CO tube between the burner and the main heat exchanger were investigated. For this study, the commercial program, FLUENT, and the GRI 2.11 detail reaction mechanism were used for the numerical study and a simple model heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between the burner and the main heat exchanger, it was verified the simultaneous NOx and CO reduction method because of increasing the residence time and decreasing the flame temperature.

  • PDF

The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants (복사열전달이 고체 추진제의 동적소화에 미치는 영향)

  • Jeong, Ho Geol;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.72-79
    • /
    • 2003
  • A numerical calculation was conducted to estimate and to elucidate the role of the radiative heat flux from metal particles(Al, $Al_2O_3$) on the dynamic extinction of solid propellant rocket where the rapid depressurization took place. Anon-linear flame modeling implemented by the residence time modeling for metalized propellant was adopted to evaluate conductive heat flux to the propellant surface. The radiative heat feed back was calculated with the aid of a modified comvustion-flow model as well. The calculation results with the propellant of AP:Al:CTPB=76:10:14 had revealed that the radiative heat flux is approximately 5~6% of total flux at the critical depressurization rate regardless of chamber geometry (open or confined chamber). It was also found that the dynamic extinction in open geometry could be predicted at the depressurization rate about 45% larger with radiative heat feedback than without radiation. Thus, it should be claimed that even a small amount of radiative flux 5~6% could produce a big error in predicting the critical depressurization rate of the metalized propellant combustion.

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Study on the Shortening Effect of the Egress Travel Time Based on an Escape Scenarios by Using Shuttle Elevators for Lotte Tall Building's Evacuation Plan (초고층건물 피난계획시 피난용 엘리베이터 이용에 의한 피난소요시간의 단축효과 연구)

  • Park, Hyung-Joo;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • A total of 19 elevators for evacuation were installed in the Lotte World Tower and it is planned to operate the shuttle using the manual key from five refuge floors to the 1st floor in an emergency. In the event of a fire or other disaster, it is necessary to conduct intensive analysis to determine how much RSET reduction could be achieved using the evacuation elevator compared to the existing evacuation plans. When the optimal transportation sharing ratio by the evacuation elevators was 40% at the Lotte World Tower, the RSET of the evacuation scenario in parallel with the elevators in the entire building was calculated to be 1 hour and 2 minutes. The RSET of a conventional evacuation scenario (Walking along the stairs without using the elevators) was calculated to be 1 hour 29 minutes, therefore, the former evacuation scenario were found to have a shortening effect of approximately 27 minutes compared to the latter. On the other hand, to maintain this effect, each part of the evacuation route using the elevator must have the capability to protect the evacuee from any hazards caused by fires, such as smoke, flame, and radiant heat during the evacuation. Moreover, the evacuation route should be continuous from the residence position of the elevator user to the final evacuation site, and be recognized easily.

Characteristics of a Plasma-Dump Combustor for VOC Destruction (VOC 분해 플라즈마-덤프 연소기 특성)

  • Kim, Eun Hyuk;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.492-497
    • /
    • 2015
  • VOCs (Volatile Organic Compounds) are generally generated in the painting process, or at the company and laundry where use organic solvents. The VOCs consist of various hydrocarbons and has low calorific value due to its dilution with atmospheric air. Therefore, the VOCs are difficult to burn by a conventional fuel combustor. In this study, a novel plasma dump combustor was proposed for the treatment of low calorific VOC gases. This combustor was designed a combination of the characteristics in a plasma burner, a dump combustor and a 3D matrix burner. The combustor has good structure for maintaining enough residence time and reaction temperature for stable flame formation and VOC destruction. For investigating the performance characteristics of the plasma dump combustor, an experiment was achieved for VOC feed rate, VOC injector position, etc. Toluene was used as a surrogate of VOC. The novel combustor gave better performance than a conventional combustor, showing that VOC destruction rate and energy efficiency were 89.64% and 12.27 kg/kWh respectively, at feeding rate of 450 L/min of VOC of 3,000 ppm of toluene concentration.