• Title/Summary/Keyword: Flame propagation velocity

Search Result 142, Processing Time 0.027 seconds

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

Study on Combustion Performance and Burning Velocity in a Micro Combustor (초소형 연소기에서 연소성능과 연소속도에 대한 연구)

  • Na Hanbee;Lee Dae Hoon;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.

A Study on Flame Propagation Through a Mixture of H2/Air and Inert Particles with Radiation Effect (복사효과를 고려한 수소/공기/불활성입자 혼합물에서의 화염전파에 대한 연구)

  • Kim, Deok Yeon;Son, Jin Wook;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1040-1047
    • /
    • 1999
  • The characteristics of flame propagation in inert particle-laden $H_2$/Air premixed gas are numerically investigated on this study. The 2nd order TVD scheme is applied to numerical analysis of governing equations and multi-step chemical reaction model and detailed transport properties are sued to solve chemical reaction terms. Radiation heat transfer is computed by applying the finite volume method to a radiative transfer equation. The burning velocities against the mole fractions of hydrogen agree well with results performed by different workers. The inert particles play significant roles in the flame propagation on account of momentum and heat transfer between gas and particles. Gas temperature, pressure and flame propagation speed are decreased as the loading ratio of particle is increased. Also the products behind flame zone contain lots of water vapor whose absorption coefficient is much larger than that of unburned gas. Thus, the radiation effect of gas and particles must be considered simultaneously for the flame propagation in a mixture of $H_2$/Air and inert particles. As a result, it is founded that because the water vapor emits much radiation and this emitted radiation is released at boundaries as radiant heat loss as well as reabsorbed by gas and particles, flame propagation speed and flame structure are altered with radiation effect.

Effect of Powder Condition on the Fire and Explosion Characteristics of Suspended and Deposited Dusts (부유 및 퇴적의 분체 조건이 화재폭발 특성에 미치는 영향)

  • Han, Ou-Sup;Seo, Dong-Hyun;Choi, Yi-Rac;Lim, Jin-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.229-236
    • /
    • 2022
  • An experimental investigation was conducted on the influences of median size, dust concentration, dust condition (cloud and layer) for the fire and explosion hazard assessment of dusts with the same powder property. For this purpose, tests have been performed in accordance with 20 L explosion sphere, thermogravi- metric analyze, combustion rate tester (UN method). We investigated the explosion characteristics and flame propagation velocity (FPV) in dust cloud and the flame spread velocity(FSV) over dust layer on 8 dust samples with different particle sizes of 4 types of dusts (Sugar, Mg, Al, Zr). An explosion hazard increased with decreasing particle size in Mg and Al dust clouds, but sugar did not show the effect of explosion hazard due to particle size change in dust clouds. The flame propagation velocity (FPV) of suspended dusts increased significantly when the particle size decreased from micro to nano than the variation of particle size in micro range. The flame spread velocity (FSV) over dust layer showed a tendency to increase over the inclined dust layers (30° slope) rather than the horizontal dust layers (0° slope). The flame spread rate (FSV) over dust layers increased on the inclined dust layer (30° slope) rather than the horizontal dust layer (0° slope) and was higher upward flame than the downward flame in condition of inclined dust layers(30° slope).

Prediction of Development Process of the Spherical Flame Kernel (구형 화염핵 발달과정의 예측)

  • 한성빈;이성열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • In a spark ignition engine, in order to make research on flame propagation, attentive concentration should be paid on initial combustion stage about the formation and development of flame. In addition, the initial stage of combustion governs overall combustion period in a spark ignition engine. With the increase of the size of flame kernel, it could reach initial flame stage easily, and the mixture could proceed to the combustion of stabilized state. Therefore, we must study the theoretical calculation of minimum flame kernel radius which effects on the formation and development of kernel. To calculate the minimum flame kernel radius, we must know the thermal conductivity, flame temperature, laminar burning velocity and etc. The thermal conductivity is derived from the molecular kinetic theory, the flame temperature from the chemical reaction equations and the laminar burning velocity from the D.K.Kuehl's formula. In order to estimate the correctness of the theoretically calculated minimum flame kernel radius, the researcheres compared it with the RMaly's experimental values.

  • PDF

Experimental Studies on the Interaction Between a Propagating Flame and Multiple Obstacles in a Rectangular Chamber

  • Park, Dal-Jae;Ahn, Jeong-Jin;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Experimental investigations were performed to assess the influences of different multiple obstacles on flame propagation in a rectangular confinement. Three different multiple obstacles were used: circular, triangular and square cross-sections with blockage ratios of 15% and 30%. The same method described in Park et al. [13] to investigate the interaction between the propagating flame and the obstacle was applied. Before the freely propagating flame impinged on the obstacle, the flame propagation speed remains close to the laminar burning velocity, regardless of the obstacles used. The reported data revealed that the trend in increase of the local flame propagation speed is a result of the interaction between the obstacle and the propagating flame front behind the obstacle. The local speed was found to increase from a circular to a triangular and a square obstacle. The mean flame speed was found to be less dependent on both the obstacle types and the different blockage ratios used.

  • PDF

Local Behaviour of Propagating Flames in an Explosion Chamber (폭발챔버에서 전파하는 화염의 국부 거동)

  • Park, Dal-Jae;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.32-35
    • /
    • 2011
  • Experimental studies were carried out in an explosion chamber to investigate the influences of multiple cylinder obstacles on local flame propagation. The chamber dimension is 235 mm in height with a $1,000{\times}950\;mm^2$ rectangular cross section and a large vent area of $1,000{\times}320\;mm^2$. Multiple cylinder bars with obstruction ratio of 30% were used. In order to examine the interaction between the propagating flames and the obstacles, temporally resolved flame front images were recorded by a high speed video camera. The propagation behaviour of local flame fronts around the left obstacle was analyzed in terms of two different methods such as the incremental burnt area divided by the flame front length and the average of the local propagation velocity determined at each point along the flame front. It was found that two methods give good consistency.

Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber (G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석)

  • Choi Chang-Yong;Park Nam-Seob;Ko Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct (이송 배관 내 분진폭발의 화염전파특성)

  • Han, OuSup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.572-579
    • /
    • 2009
  • This study is to investigate experimentally the flame structure and propagation mechanism in dust explosions and to provide the fundamental knowledge. Upward propagating laminar dust flames in a vertical duct of 1.8 m height and 0.15 m square cross-section are observed and flame front is visualized using by a high-speed video camera. Also, the thicknesses of preheated and reaction zone have been determined by a schlieren, electrostatic probe and thermocouple. The thickness of preheated zone in lycopodium dust flame is observed to be 4~13 mm, about several orders of magnitude higher than that of premixed gaseous flames. From the experimental results by a PIV(Particle Image Velocimetry) system, a certain residence time of the unburned particle in preheated zone is needed to generate combustible gas from the particle. The residence time will depend on preheated zone thickness, particle velocity and flame propagation velocity.