• Title/Summary/Keyword: Flame propagation velocity

Search Result 142, Processing Time 0.026 seconds

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation (물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

A Study on the Effects of Ignition Energy and Systems on the Flame Propagation in a Constant Volume Combustion Chamber (정적연소기에서 점화에너지와 점화장치가 화염전파속도에 미치는 영향에 관한 연구)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • A constant volume combustion chamber is employed to investigate the initial flame kernel development and flame propagation of gasoline-air mixtures with various ignition systems, ignition energy and spark plug electrodes. To do this research, four ignition systems are designed and manufactured, and the ignition energy is controlled by varying the dwell time. Several kinds of spark plugs are also made to analyze the effects of electrodes on flame kernel development. The velocity of flame propagation is measured by the laser deflection method. The output laser beam from He-Ne laser is divided into three parallel beams by a beam splitter. The splitted beams pass through the combustion chamber. They are deflected when contacted with flame front, and the voltage signals from photodiodes change due to deflection. The results show that higher ignition energy raises the flame propagation speed especially under the fuel lean operation. The wider electrode gap, smaller electrode diameter and sharper electrode tip make the speed of the initial flame propagation faster. The speed of the initial flame propagation is affected by electrode material as well. Electrode material with lower melting temperature help the initial flame propagation.

  • PDF

A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel (좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

Flame Propagation in a Micro Vessel under Excessive Heat Loss (과도한 열손실을 수반하는 초소형 정적연소실 내 화염전파)

  • Na, Han-Bee;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.95-98
    • /
    • 2002
  • A numerical investigation on the flame propagation and extinction in a micro combustor is described. Previous measurements of $H_2-air$ flame propagation in a submilimeter scale combustor exhibited significance of wall effects on burning velocity and extinction. The heat transfer to wall becomes important not only in the cooling of burnt gases but also during the flame ropagation, which has be by and large ignored in macro scale combustor calculations. In order to take the heat loss into account the combustion calculation, we developed a numerical code with a heat transfer model that was determined empirically from measured data. PISO algorithm was used for differencing of conservation equations. $H_2-air$ reaction was modeled with 10 species - 16 steps. Comparison with measured data showed good agreement in flame propagation speed. Also the pressure decrease after flame extinction was accurately predicted by the model. A further study is desirable for a better quenching model that can predict the quenching location.

  • PDF

The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber (정적 연소실내에서 화염 전파 과정에 대한 실험적 연구)

  • Kim, Chun-Jung;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

A theoretical study on the extinction of the premixed flame in a tube caused by a logitudinal velocity variation (축방향 유속변동에 의한 관내 예혼합화염의 소화특성에 관한 이론적 연구)

  • Kim, Nam-Il;Shin, Hyun-Dong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.111-118
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors but more detailed and fundamental research has been necessary. The study on the flame stabilization condition in a tube and the unsteady behaviors were carried out in recent years. In this paper, a mean velocity variation larger than the burning velocity was introduced to the stabilized flame for a period longer than the reaction time scale in order to examine the unsteady behavior of flame propagation. Through our previous work it was found that the effects of non-unity Lewis number on the flame extinction was negligible in the extinction by the boundary layer even though they were important in the extinction by the acoustic instability. In this paper we carried out an analytic approach to explain the previous experimental results. It showed that the heat loss, from a flame to the wall, is not a sufficient condition but a required one for the growth of the extinction boundary layer. In addition, the quenching and the flame stretch, under a strong unsteady flow field, are the main causes of the eventual extinction.

  • PDF

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.