• 제목/요약/키워드: Flame propagation time

검색결과 76건 처리시간 0.024초

반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(II) (A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (II))

  • 김봉석
    • 에너지공학
    • /
    • 제13권4호
    • /
    • pp.311-318
    • /
    • 2004
  • 본 연구에서는 정적연소실을 이용하여 차량용 대체연료로써 메란 및 수소첨가 메탄의 연소특성을 수소첨가율, 점화위치 및 점화방법에 따라 고찰하였다. 그 결과, 중심점화이고 수소를 첨가하지 많은 순수 메탄의 화염전파과정은 타원형으로 전파하나 수소첨가율이 증가함에 따라 화염면상에 매우 규칙적인 세포구조를 가진 불안정한 타원형화염으로 천이되었고 연소속도도 증가하였다. 또한, 벽면 및 0.5R 점화이고 수소를 첨가하지 않은 순수 메탄의 화염전파과정은 불안정한 타원형으로 전파하고 있었지만, 수소첨가율이 증가함에 따라 연소중기에 불안정한 타원형에서 평면형으로 천이 됐다가 연소말기에는 화염면 선단이 움푹 패인 매우 불규칙한 세포구조를 갖는 패기형으로 변화되었으며 연소속도도 증가하였다 한편, 세 가지 점화위치 모두에 있어서 MSCDI와 CDI사용에 따른 화염전파형태는 외견상 큰 차이는 없었지만, 동일시간에 MSCDI장치의 화염면적은 CDI의 화염면적보다 약간 더 크게 나타났다.

저공해 수소첨가 천연가스차량 개발을 위한 기초연구 (A fundamental study of hydrogen supplemented natural gas vehicle to meet ULEV)

  • 김봉석;이영재;류정인
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.358-370
    • /
    • 1997
  • In the present study, investigations were carried out to obtain data on combustion characteristics of methane gas and hydrogen supplemented methane gas in a constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The maximum combustion pressure increases as the initial pressure and hydrogen supplement rate increase, the total burning time is shorten by lowering the initial pressure and by increasing the hydrogen supplement rate. The maximum flame temperature and NO concentration increase by the initial pressure and hydrogen supplement rate increase. The flame propagation processes in near stoichiometric mixture are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate.

체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구 (The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect)

  • 정의헌;권세진
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

수소 예혼합기의 정상 및 이상연소에 관한 수치해석 (A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture)

  • 손채훈;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성 (Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations)

  • 김길남;원상희;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.15-20
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating of coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

농도 불균일 LPG-공기 혼합기체의 폭발특성 (Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures)

  • 배정일;김영수;서용칠;신창섭
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성 (Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations)

  • 김길남;원상희;정석호
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파 (Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies)

  • 박달재;김남일
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.6-10
    • /
    • 2011
  • 실린더형 챔버내에서 정전기 방전에너지 변화에 따른 가솔린-공기 혼합물의 화염전파에 관한 영향을 조사하기 위해 실험적 연구를 수행하였다. 3개의 서로 다른 정전기 방전 에너지(1 mJ, 50 mJ 및 98 mJ)를 실험변수로 사용하였으며, 점화원 전극 주변의 미연소가스 유동장을 가시화하기 위해 고속 PIV 시스템을 적용하였다. 정전기 방전 에너지가 증가할 때, 점화원 핵은 찌그러면서 초기화염에 영향을 미치는 것으로 나타났다. 초기화염 동안에 화염속도는 점화에너지가 높을수록 증가하는 것으로 나타났으나, 초기화염 이후에 시간이 증가할수록 화염속도는점화에너지에 관계없이 거의 유사하였으며, 이는 문헌[5]에서 보여진 전산유체 모델링 결과의 경향과 거의 유사하였다. 또한, 점화에너지가 증가할 때 전파하는 화염 전면의 미연소가스 속도장은 증가하는 것으로 나타났다.

통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구 (Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity)

  • 박정;신현동;코바야시 히데아키;니오카 다카시
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

An Experimental and Mathematical Study on the Effects of Ignition Energy and System on the Flame Kernel Development

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.829-838
    • /
    • 2002
  • A constant volume combustion chamber is used to investigate the flame kernel development of gasoline air mixtures under various ignition systems, ignition energies and spark plugs. Three kinds of ignition systems are designed and assembled, and the ignition energy is controlled by the variation of the dwell time. Several kinds of spark plugs are also tested. The velocity of flame propagation is measured by a laser deflection method, and the combustion pressure is analyzed by the heat release rate and the mass fraction burnt. The results represent that as the ignition energy is increased by enlarging either dwell time or spark plug gap, the heat release rate and the mass fraction burnt are increased. The electrodes materials and shapes influence the flame kernel development by changing he transfer efficiency of electrical energy to chemical energy. The diameter of electrodes also influences the heat release rate and the burnt mass fraction.