• Title/Summary/Keyword: Flame diameter

Search Result 210, Processing Time 0.041 seconds

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber (정적 연소실내에서 화염 전파 과정에 대한 실험적 연구)

  • Kim, Chun-Jung;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle (U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향)

  • Kim, H.G.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame (대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석)

  • Jeong, Jae In;Hwang, Jun Young;Lee, Bang Weon;Choi, Mansoo;Chung, Suk Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).

Quantitative Distribution of Created Voids by Applying General Flame and DC Short-circuit Current to 2.5 mm2 HIV (2.5 mm2 HIV에 일반화염 및 DC 단락 전류를 인가하여 생성된 기공의 정량적 분포 해석)

  • Kim, Seung-Sam;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.38-42
    • /
    • 2013
  • This study performed the quantitative distribution analysis of created voids to an insulator when applying general flame and DC short-circuit current to 2.5 $mm^2$ HIV (600 V Grade Heat-Resistant Polyvinyl Chloride Insulated Wires). The diameter of cross-section of HIV normal product and the radius of conductor were measured to be 3.3 mm and 1.8 mm. The exterior of HIV exposed to general flame showed severe carbonization and its interior exhibited voids created by dechlorination reaction. This study observed the characteristics that, when the shortcircuit current applied for 2 seconds from a DC 12 V lead battery, the conductor and neighboring insulator were melted, causing the insulator adhering to the conductor. On average, 87 voids were created on 10 mm of the HIV. The average diameter of voids was 0.25 mm. In addition, it was found that, when the short-circuit current applied for 4 seconds, the interior of insulator in contact with conductor severely carbonized and showed exfoliation phenomenon. On average, 47 voids were created, with more voids at the bottom. The average diameter of voids was 0.20 mm. When the short-circuit current for 6 seconds, most parts of upper part of conductor was carbonized, 20 voids were created. The average diameter of voids was measured to be 0.24 mm. It could be seen that the created voids received little influence by the type of energy source and the number of created voids was reduced as the energy supply time increased.

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Effect of Flame Interaction on the NO Emission (다수 상호작용 화염의 공해배출물 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.730-736
    • /
    • 2005
  • It has been reported that the interacting multiple jet flames of propane fuel are not extinguished even at the choking velocity at the nozzle exit if eight small nozzles are arranged along the imaginary circle of $40{\sim}72$ times the diameter of single nozzle. In this research, experiments were conducted to know the NO and CO emission characteristics of the interacting flames. Measurements along the centerline of the flame revealed that decrease in CO concentration was followed by the NO decrease and $O_2$ increase. It was found that interacting flame emitted less NO than that of similar area single jet flame. Also, NO emission of partially premixed interacting flame was decreased up to $17\%$ of that of non-premixed multiple jet flame. Though the mechanism of the NO reduction was not clear from this experiment, it's been shown that partially premixed multiple jet flames could be used to achieve clean and highly stable combustion.