• Title/Summary/Keyword: Flame diameter

Search Result 210, Processing Time 0.023 seconds

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Spray Characteristics of the Pressure Swirl Injector for the APU Gas Turbine Engine (APU 가스터빈엔진 압력식 스월인젝터의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.359-364
    • /
    • 2007
  • Spray characteristics of the APU gas turbine engine were investigated. In order to understand blow out phenomena of the APU engine, we performed fuel spray test. In the test, four operating conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power were used as spray experimental conditions. PDPA(phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity. Also spray visualization was performed by using ND-YAG sheet laser beam. From the test result, in the case of 20,000 feet idle condition, SMD is about 100 ${\mu}m$ and maximum particle velocity is about 10 m/s. For the flame stability, spray quality should be improved at 20,000 feet idle condition.

  • PDF

Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames (이중동축류 확산화염에서의 매연 및 PAH 생성 특성)

  • Lee, Won-Nam;Nam, Youn-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Numerical analysis of turbulent combustion in Supercritical combustor with multi-injector (다중 분사기가 장착된 초임계 연소기 난류연소해석)

  • Jeon, Tae Jun;Park, Tae Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.803-810
    • /
    • 2017
  • the liquid oxygen transitions to a supercritical state, causing rapid changes in properties and pseudo boiling in supercritical combustion. the combustion reaction operating in a supercritical state depends on the turbulence diffusion caused by difference of density, therefore, a study of the diffusion flow and pseudo boiling is required. Many researchers have studied these phenomena in the supercritical combustion, but A case study by various variables is inadequate. In this study, the flow field and flame structure were investigated numerically by changing the recirculation flow and liquid oxygen core length through oxygen-fuel ratio(O/F), combustor diameter and recess ratio at supercritical pressure condition.

  • PDF

A Study on Combustion Characteristics of Non-Circular Grain in Hybrid Rocket for RATO (Rocket-Assisted Take Off) System (RATO(Rocket-Assisted Take Off) 시스템 적용을 위한 하이브리드 로켓 비단공형 연료 그레인 기초 연소특성 연구)

  • Su Jin Kim;Su Han Ko;Sul Hee Kim;Gyeong Mo Kim;Seong Geun Lee;Ye Chan Han;Hee Jang Moon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • In an attempt to apply hybrid rocket to the RATO (Rocket-Assisted Take Off) system, combustion characteristics of the non-circular grain were figured out in this study. Having larger combustion area, it was reconfirmed that the non-circular grain has advantages over regression rate, characteristic velocity and chamber pressure in which all gave higher values. Experiments were performed to understand the effect of the non-circular grain geometry over time where local regression rates depending on grain location were analyzed. It was found that the regression rate of five distinct locations were different. Partial conclusion driven was that these differences are due to the heat transfer caused by dissimilar distances from the flame layer. Besides, as combustion duration increased, the fuel port became circular, and the regression rate converged to a single value over the whole grain.

BOND STRENGTH OF RESIN CEMENTS TO ZIRCONIA CERAMIC (지르코니아 세라믹과 레진 시멘트의 결합강도)

  • Chang Mun-Suk;Kim Ji-Hye;Cho Suck-Kyu;Bok Won-Mi;Song Kwang-Yeob;Park Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.426-437
    • /
    • 2005
  • Statement of problem : Although zirconium oxide ceramics are more and more commonly used in restorative dentistry, for many clinical applications only limited data can be found in the literature. However it is quite clear that hydrofluoric acid etching is impossible with zirconia ceramics. Therefore, other bonding techniques are required in order to lute these materials adhesively. Purpose : The purpose or this study was to evaluate the effects of surface treatments on shear bond strengths between two resin cements and a zirconia ceramic. Materials and methods : Experimental industrially manufactured yttrium-oxide-partially-stabilized zirconia ceramic discs (Adens, Korea) were used for this study. The ceramic specimens divided into five experimental groups and a control group (as received). Five surface treatments were studied 1) sandblasting with 110$\mu$m $Al_2O_3$ at 3 bars pressure 13 seconds at a distance of 10 mm, 2) flame-treated with the Silano-Pen for 5 $s/cm^3$, 3) grinding with a diamond bur. 4) sandblasting + Silano-Pen treatment, 5) diamond bur preparation + Silano-Pen treatment. Acrylic plastic tube (5 mm in height and 3 mm in diameter) were filled with composite to fabricate composite cylinders The composite cylinders were bonded to the ceramic specimens with either Superbond C&B or Panavia F resin luting agents. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture was recorded. Sheat bond strength data were analyzed with oneway analysis of variance and Tukey HSD tests (P<.05). Treated ceramic surfaces and fracture surfaces after shear testing were examined morphologically using scanning electron microscope. Results: Ceramic surface treatment with Silano-Pen after sandblasting improved the bond strength of Superbond C&B resin cement. Supevbond C& B resin cement at Silano-Pen aiker sandblasting($27.4{\pm}3.8MPa$) showed statistically higher shear bond strength than the others. Conclusion: Within the limitation of this study, Superbond C& &B resin cement are suitable for cementation of zirconia ceramics and flame-treated with the Silano-Pen after sandblasting is required to enhance the bond strength.

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

The Optimization of Cylindrical Perforated Burner for Condensing Gas Boiler (콘덴싱 가스보일러용 원통형 다공버너의 최적화 연구)

  • 이창언;장기현;이강주;정영식
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • The objective of performing this study is to develop low emission condensing gas boiler. To reduce NOx and CO, three reasonable distances between burner and heat exchanger were decided through the experiments of model plane burner. Three burners with different diameter were made and then emission characteristics were examined. The optimum burner geometry was determined from flame stability, pollutant emission characteristics and applicability to the practical boiler system. In the domain of equivalence ratio 0.68~0.85, turn-down ratio of the burner designed by this research was extended to a wider range of 5 : 1. Thermal efficiency of the boiler developed by this study reached to 97% (LHV basis) of heating water efficiency at heating load of 20,000 kcal/hr when fueled by both of LNG or LPG. Emission ($O_2$=0%, wet basis) of NOx and CO concentration was 26 ppm and 85 ppm when fueled by LNG, 41 ppm and 113 ppm when fueled by LPG respectively.

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.