• Title/Summary/Keyword: Flame cell

Search Result 79, Processing Time 0.024 seconds

A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration (비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구)

  • Park, Hyunsu;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

Deep Learning Structure Suitable for Embedded System for Flame Detection (불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2019
  • In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

Pt Coating on Flame-Generated Carbon Particles (화염법을 이용한 Pt/C 촉매 제조)

  • Choi, In-Dae;Lee, Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam (인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Chang Bum;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-81
    • /
    • 2013
  • In this study, the effect of halogen-phosphorus flame retardant on the flame retardancy and the mechanical properties of the rigid polyurethane foam (PUF) were studied. The reduced compressive strength and glass transition temperature of PUF decreased as contents of the flame retardant increased. After aging, the reduced compressive strength and glass transition temperature of PUF increased due to the reaction of unreacted isocyanate. The cell morphology effect of these flame retardants was also investigated using scanning electron microscope. The results of TCEP added to PUF showed an unstable and uneven cell morphology, leading to the increase of in thermal conductivity. The flame retardancy of vacuum aged PUF decreased compared to that of fresh PUF.

Characterization of Flame-Retardant Foam Asphalt (난연성 폼아스팔트 특성에 관한 연구)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.246-253
    • /
    • 2012
  • This study was carried out to prepare a type of warm mix asphalt. Through urethane foam and emulsion asphalt preparation techniques a protocol of asphalt foam was made. Then three kinds of flame retardant agents were added in there to alleviate the inherent susceptability of asphalt and foam material to flame and thus flame retardant asphalt foam was made. The internal structure of form asphalt was composed of open cell. The higher the NCO% brought the larger the cell and the stronger also. Asphalt increased the strength of the foam. Among the flame retardant agents employed tritorylphosphate was the most effective.

Temperature measurement of the spray flame using micro scale absorption bands and line strength (마이크로 스케일의 흡수선과 흡수강도를 이용한 분무화염의 온도측정)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • It is necessary to develope a high frequency diode laser sensor system based on the absorption spectroscopy for the measurement of temperature of the spray flame. DFB diode laser operating near $2.0{\mu}m$ was used to scan over selected $H_2O$ transitions near $1.9{\mu}m\;and\;2.2{\mu}m$, respectively. The measurement sensitivity at wide range of sweep frequency was evaluated using multi-pass cell containing $CO_2$ gas. This diode laser absorption sensor with high temporal resolution up to 10kHz was applied to measure the gas temperature in the spray flame region of liquid-gas 2-phase counter flow flame. The successful demonstration of time series temperature measurement in the spray flame gives us motivation of trying to establish non-intrusive temperature measurement method in the practical spray flame.

  • PDF

Flame Retardant Properties of Polyurethane by the Addition of Phosphorus Compounds (인계 화합물의 첨가에 의한 폴리우레탄의 난연성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.110-115
    • /
    • 2006
  • Polyurethane(PU) was mixtured by the treatment with flame retardants such as Tri(chloroisopropyl) phosphate(TCPP), Triethyl phosphate(TEP) and Trimethyl phosphate(TMP) at about $90^{\circ}C$. Rigid polyurethane foam was produced using the mixured products as flame retardants. The mechanical property and flammability of rigid polyurethane was investigated. The mixtured polyurethane shows reduced flammability over virgin polyurethane. Mechanical strength of mixtured polyurethane also shows as high as that of virgin polyurethane. In order to evaluate flame retardant properties of the mixtured polyurethane foams, heat release rate(HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of mixtured PU shows uniform cell morphology as virgin PU.

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).