• Title/Summary/Keyword: Flame arrived time

Search Result 2, Processing Time 0.019 seconds

Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket (LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구)

  • Lee, Joung-Won;Choi, Hoi-Myung;Cho, Hoon;Hwang, Seung-Hwan;Min, Kyoung-doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.

Comparison Study of AAS and ISE Method in the Lithium Analysis of Serum and Urine (혈액 및 소변의 Lithium치 측정에 있어서 AAS법과 ISE법의 비교)

  • Lee, Soo-In;Lee, Chae-Hoon;Kim, Kyung-Dong;Kim, Chung-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.409-416
    • /
    • 1993
  • In the method for lithium (Li) analysis, flame emission photometry and atomic absorption spectrophotometry (AAS) have been used most frequently. In addition, lithium can be analyzed by ion-selective electrode (ISE) or fluorscence polarization immunoassay. We evaluated the comparison between AAS method based on the principle of absorption of light at 670.8 nm by Li and ISE method based on the principle of voltage difference generated by Li in contact with lithium ionophore. We compared with those obtained by AAS (AA/AE Spectrophotometer 551, Instrumentation Laboratory Co.) and ISE(CSYNCHRON EL-ISE, Beckman Co.) in the serum and urine of 6 patients and evaluated time-related changes of serum lithium concentration after dosing in both methods. The results are summarized as follows : 1. In within-run precision study for lithium concentration, coefficient variations (CVs, %) ranged from 1.34 to 2.17 for AAS and from 0.34 to 0.85 for ISE method. In between-run precision study for lithium concentration, CVs ranged from 1.23 to 1.72 for AAS and from 0.61 to 1.38 for ISE method. 2. The correlation study between AAS and ISE method resulted in Y=0.946X+0.137 (N=32, r=0.933, X=AAS, Y=ISE) for serum lithium and Y=1.092X+0.977 (N=28, r=0.943, X=AAS, Y=ISE) for urine lithium. 3. Time-related changes of serum lithium concentration in both AAS and ISE method resulted in peak serum levels about 2 hours after dosing and then rapidly decreased after the peak serum level and finally arrived at nearly initial levels about 9 hours after dosing. 4. The reference range of serum lithium was found as undetectable level for both AAS and ISE method and the reference range of urine lithium to the urine creatinine was 0-0.00014 mmol/mg(mean 0.00002 mmol/mg) for AAS method.

  • PDF