• Title/Summary/Keyword: Flame arrester

Search Result 13, Processing Time 0.019 seconds

A Study on the Fire Suppression Characteristics of a Flame Arrester with Water Mist System (미분무 시스템이 장착된 화염방지장치의 화재 진화 특성에 관한 연구)

  • Kim, Hae-Ji;Lee, Kyung-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.117-124
    • /
    • 2016
  • In this paper, we developed a breather valve with a water mist system for use near an oil storage tank. Our process applied a water mist system to the flame arrester to evaluate the fire suppression characteristics. For the fire suppression evaluation of the water mist system, we evaluated the angle of the nozzle, fire suppression, spray particle size, flashback, fire suppression time, and fire suppression test of antifreeze. Through the fire suppression test, the best fire suppression nozzle used an angle of $140^{\circ}$, and the flashback phenomenon of flame arrester did not occur. The fire suppression time of water mist system time was within three seconds, and the antifreeze was no problem with the fire suppression.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

Study of Fire and Explosion Prevention of an Internal Floating Roof Tank (내부 부상형저장탱크(IFRT) 화재·폭발 예방대책에 관한 연구)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • This study examined the safety of storage tanks by analyzing the causes of fire on outdoor storage tanks. The outdoor storage tank is a fixed device for the long-term storage of dangerous goods and consists of a tank body and accessories; the accessories consist of a vent system, breather valve, flame arrestor, etc. The flame arrestor is a necessary safety measure to prevent fire explosions on outdoor storage tanks. On the other hand, it has been suggested that the installation of a flame arrester is necessary to compare the domestic and international standards. In addition, the flame arrester should be installed in the existing outdoor storage tanks, to complement foreign standards because there are not enough domestic standards to verify the performance of the flame arrester.

CFD Analysis and Explosion Test of a Crankcase Relief Valve Flame Arrester for LNG-fuelled Ships (LNG 연료 추진 선박용 크랭크실 릴리프 밸브 화염방지기의 유동해석 및 폭발시험)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Dong Keon;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Growing concerns about air pollution have led to increased demand for liquefied natural gas (LNG)-fuelled ships that have crankcases equipped with explosion relief valves to relieve excessive crankcase pressures and stop the flames emitted from the crankcase. The results of a computational fluid dynamics (CFD)-based feasibility analysis of the crankcase relief valve flame arrester design conducted using ANSYS CFX V14 showed that the inlet and outlet relief valve temperatures differed by $350-700^{\circ}C$. An explosion test was performed based on European standard EN14797 to evaluate the flame transmission and mechanical integrity of the valve. No flame transmission from the pressure vessel to the exterior was detected, and the mechanical integrity of the valve was confirmed. Thus, the relief valve components were found to be safe from the viewpoint of fracture.

The Quenching Ability of Flame Arrester (화염방지기의 소염성능)

  • Ryu, Eun-Ryeol
    • Fire Protection Technology
    • /
    • s.11
    • /
    • pp.23-30
    • /
    • 1991
  • For the prevent of fire accident or explosion disasters from inflammable gas and vapour, flame arresters are used in chemical equipment, oil tank or other similar installation. The flame arresters have been used mainly wire gauze type. Wire gauze type flame arrestes is affected several factors. We have know that the quenching ability has a great of difference the preference in accordance with flame velocity, direction of flame propagation and wire net of mesh and number of qauze and introduce examination result data quoated from the abroad.

  • PDF

A Study on the Quenching Ability of Wire Gauze in a Explosion Pipe (폭발관내에서 금속망 소염소자의 소염성능에 관한 연구)

  • 김영수;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.83-89
    • /
    • 1997
  • The behaviors of flame propagation and quenching ability in a pipe were investigated to make a design criteria of flame arrester. The effects of the number of wire gauzes and free area on the quenching ability were discussed. Experimental results showed that the flame velocity was important factor of the quenching ability. The flame velocity in case of closed pipe was increased about twenty times faster then that of opened. The quenching ability was increased about 10% with 3% decrease of free area and it was changed significantly by the sealing condition of the pipe end. The quenching flame velocity can be estimated by using experimental equations.

  • PDF

A study of Flame Arrestor's Spring Structural Analysis (폭연방지기 스프링의 구조해석에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Kim, Jun-Ho;Choi, Min-Seon;Yang, Chang-Jo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.69-69
    • /
    • 2017
  • Flame arrestor as end of line flame arrester for endurance burning prevents a light-back at deflagration and stabilized burning (during and after endurance burning) of potentially explosive vapor-air and gas-air mixtures at the end of vent pipes. In a flame arrestor, spring is an important part. The spring load as well as the spring's elasticity determine when the hood is opened. In addition, the spring have to work in high temperature condition due to gas burning. Therefore, it is necessary to analyze mechanical load and elasticity of spring when gas is burned. Based on the dynamic calculation on working process of a specific flame arrestor, analysis of spring is taken. A three dimensional model for spring burned in flame arrestor by using CFD simulation. Results of the CFD analysis are input in FEM simulation to analyze structure of the spring. The simulation results can predict and estimate the spring's load and elasticity at variation of the spring's deflection. Moreover, the obtained result can provide makers with references to optimize design of spring as well as flame arrestor.

  • PDF

Effects of Explosion Pipe Structure on the Flame Propagation Velocity and the Quenching Ability of Ceramic Honeycomb Monolity (화염전파속도에 대한 폭발관 구조의 영향과 세라믹 소염소자의 소염성능)

  • 김영수;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.56-61
    • /
    • 1995
  • The behaviors of flame propagation and quenching in a pipe were investigated to make a design criteria of flame arrester. The effects of sealing condition of pipe end, pipe diameter and lengh were studied, and also the effects of thickness of ceramic honycomb monolith on the quenching ability were discussed. Experimental results showed that the flame velocity in case of closed pipe was increased about twenty times faster than that of opened and the sealing coditions of pipe end and length showed significant effects on it. The quenching ability of ceramic honycomb monolith was Increased with thickness and coincided well with Palmer's equation.

  • PDF

A Study on the Safety Improvement in Incineration System from the Case Study of Acrylic acid manufacturing process Accident (아크릴산 제조공정 사고사례를 통한 소각 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.52-58
    • /
    • 2012
  • Recently, waste gas incineration is increasing due to strong environmental regulatory system in Korea. These incinerating facilities are usually connected with the top of the storage tank through pipeline and incinerate off gas with the flame. Therefore, the flame originated from these facilities is likely to move back into pipeline and might cause an explosion of the storage tank. Accordingly, the purpose of this study is to suggest the preventive measures and the way to improve the safety of these incineration systems through the cause analysis of a major industrial accident occurred in a acrylic acid manufacturing process in Korea. As a result of the study, the preventive measures are suggested as follows. (1) Air or inert gas inflow facilities should be well designed to dilute flammable gases into air or inert gas sufficiently before the blower is restarted in order to prevent the explosion (2) It is needed for the detonation-type flame arresters to be installed on the top of the storage tanks. (3) In case of using the deflagration-type flame arresters, it is necessary to install a rupture disk before the arresters, or blow off the flame outside tanks by connecting the tank top and the incinerator with hood-type pipe. (4) TDR should be installed to be restarted automatically after the momentary power failure.

A Study on Safety of Atmospheric Storage Tank through Detailed Analysis of Accident Case (사고사례 정밀분석을 통한 상압저장탱크의 안전에 관한 연구)

  • Yim, Ji Pyo;Park, Su Youl
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.41-48
    • /
    • 2019
  • In October 2018, a large fire occurred after an explosion in an internal floating roof tank (IFRT) that stores gasoline by wind lantern in Goyang city, Gyeonggi-do. Although there was no casualty damage, the fire inside the tank lasted for 17 hours, and caused a great wave socially, and it was a chance to review the safety of the atmospheric storage tank. In this study, the necessity of installing a flame arrester at peripheral vents was examined through the calculation of the size of ventilation pipe and ventilation rate of internal floating roof tanks in terms of the function of the peripheral vent. Next, the necessity of the emergency shut-off valve linked with the high-level alarm to prevent the overflow of the atmospheric storage tank was confirmed by LOPA. Finally, safety measures to prevent overpressure, flame propagation and overflow which cause major accidents in atmospheric storage tank are suggested.