• 제목/요약/키워드: Flame Propagation Process

검색결과 67건 처리시간 0.028초

정적 연소실내에서 화염 전파 과정에 대한 실험적 연구 (The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber)

  • 김춘중;강경구
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

프로판-공기 예혼합기의 화염전파 과정에 관한 연구 (Flame Propagation Characteristics of Propane-Air Premixed Mixtures)

  • 배충식
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

난류 혼합층 확산화염에서 부상선단의 난류전파속도에 대한 연구 (Study on the Turbulent Edge Propagation Speed of a Lifted Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.55-61
    • /
    • 2004
  • Leading front of a lifted diffusion flame in turbulent mixing layer was investigated in order to find a appropriate definition of the turbulent edge propagation speed. The turbulent lifted diffusion flame was simulated by employing the flame hole dynamics combined with level-set method which yields a temporally evolving turbulent extinction process. By tracing the leading front locations of the temporal flame edges, temporal variations of the liftoff height, local flow velocity, and edge propagation speed at the leading front were investigated and they demonstrated the flame-stabilization condition of the turbulent lifted flame. Finally, a turbulent edge propagation speed was defined and its temporal variation from the simulation was discussed.

  • PDF

엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성 (Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

층류제트 화염의 노즐직경에 따른 안정화 메커니즘과 화염형상에 관한 연구 (A Study on the Flame Configuration and Flame Stability Mechanism with a Nozzle Diameter of Laminar Lifted Jet Flame)

  • 김태권;김경호;하지수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.204-215
    • /
    • 2011
  • 화염 안정성은 층류부상화염의 중요한 메커니즘 중 하나이며 화염전파속도는 화염안정화를 평가하기 위한 척도가 된다. Bilger는 삼지점을 기준으로 혼합분율과 화염의 형상에 관계된 삼지화염의 화염 전파속도 및 안정화 메키니즘을 제시하였다. 그러나 동축류 작은 노즐을 이용한 실험과 수치해석에서는 화염이 형성되고 소화되는 전 과정을 상세히 관찰 할 수는 없었다. 본 논문에서는 노즐 직경에 따른 화염거동과 화염 형상 및 안정화 메커니즘에 대하여 세분화하였다. 본 논문의 결과로 노즐에 따른 삼지화염의 거동과 삼지화염전파, 화염면 전파 및 평면화염의 존재 등을 구분하였다. 그리고 삼지화염전파 거동에 있어서 열린삼지화염전파 및 닫힌 삼지화염전파 거동에 대해 구분하였다.

SCV를 장착학 가솔린 가시화엔진에서의 연소특성 (Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF

Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사 (Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염의 모사 (Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회지
    • /
    • 제9권2호
    • /
    • pp.18-29
    • /
    • 2004
  • Partial quenching structure of diffusion flames in a turbulent mixing layer has been investigated by the method of flame hole dynamics in oder to develope a prediction model for the phenomenon of turbulent flame lift off. The present study is specifically aimed to remedy the shortcoming of the stiff transition of the conditioned partial burning probability across the crossover condition by employing the level-set method which enables us to include the effect of finite flame edge propagation speed. In light of the level-set simulation results with two models for the edge propagation speed, the stabilizing conditions for turbulent lifted flame are suggested. The flame hole dynamics combined with the level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping based on three critical scalar dissipation rates. The probability to encounter reacting state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate. Such a smooth transition is attributed to the finite response of the flame edge propagation.

  • PDF

SCV를 장착한 2밸브 Sl 가시화기관의 연소특성에 관한 연구 (A Study of the Combustion Characteristics Using a 2-valve Sl Optically Acessible Engine with SCV)

  • 정구섭;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1692-1701
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve SI optically accessible engine with swirl control valve(SCV). It adapted three different types of SCV(open ratio 72.5%, 78%, 59%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt) were calculated to explain burn rate and flame speed. From acquired flame images, we inspected the flame propagation direction, flame area, and flame centroid. Flame propagation direction showed different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame images at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

Optimal Threshold 법을 이용한 가솔린 기관의 실린더 내화염 가시화 및 화염 전파 특성에 관한 연구 (In-cylinder Flame Visualization and Flame Propagation Characteristics of SI Engine by using Optimal Threshold Method)

  • 김진수;전문수;윤정의
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.96-104
    • /
    • 2000
  • It is well known that combustion stability under idle and part-load conditions directly affect fuel economy and exhaust emission. In practice, there have been a lot of studies so that a significant improvement in combustion stability has been achieved in this research field. However, applying published results to the development process of mass production engine, there are still many problems which are solved previously. In this study, initial flame behavior and flame propagation characteristic were investigated statistically in order to optimize combustion chamber shapes in the development stage of mass production S.I. engine. To the purpose, the authors applied the flame image capturing system to single cylinder optical engine. The captured flame images were effectively analyzed by using the image processing program which was developed by the authors and adopted new threshold algorithm instead of conventional histogram analysis. In addition, the cylinder pressure was also measured simultaneously to compare evaluated flame results with cylinder pressure data in terms of the combustion characteristics, combustion stability, and cycle-to-cycle combustion variability.

  • PDF