• 제목/요약/키워드: Flame Dynamics

검색결과 131건 처리시간 0.026초

얇은 층류 화염편 영역에서 화염과 와동의 산호 작용 (Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime)

  • 강지훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF

케이블 화재의 화염전파 해석을 위한 FDS 모델의 격자민감도 평가 (Assessment of Grid Sensitivity in the FDS Field Model to Simulate the Flame Propagation of an Electric Cable Fire)

  • 김성찬;이성혁
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.30-35
    • /
    • 2008
  • The present study has been conducted to examine the effect of grid resolution on the predicted results for electric cable fire using pyrolysis model in FDS(Fire Dynamics Simulator, version 5). The grid independent test for different grid resolutions has been performed for a PE coating cable and the grid resolution is defined by the non-dimensional characteristic length of fire and mean grid size. The calculated maximum heat release rate and mean flame spread rate were almost constant for higher grid resolution of 20${\sim}$25 and the computing time for the grid resolution takes approximately 20hours to solve flame propagation with pyrolysis model. The geometrical simplification of a electric cable dose not greatly affect on the maximum heat release rate and flame spread rate and the rectangular approximation of cable shape gives acceptable result comparing with the round cable with stepwise grid.

닥트두께가 대향류 화염구조에 미치는 영향의 조사 (Investigation of Effects of Duct Thickness an Counterflow Flam Structure)

  • 박외철;고경찬
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.61-65
    • /
    • 2002
  • Nonpremixed counterflow flames at low strain rates, $ag=12s^{-1}$ and $12s^{-1}$, were numerically simulated to investigate the effects of the duct thickness on the flame structure in normal gravity. For small values of the duct thickness, the positions of the flame and stagnation point were highly sensitive to the duct thickness. When the duct thickness was greater than 6mm, however, the effects of the duct thickness on the flame structure were negligible. The computed temperature along the duct centerline agreed well with measurements.

스크램제트 연소기 내의 난류 연소 유동 해석 (Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors)

  • 최정열;원수희;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

램제트 엔진의 점화 천이에 관한 연구 (Ignition Transient Mechanism in an Entire Integrated Rocket Ramjet Engine)

  • 성홍계
    • 한국추진공학회지
    • /
    • 제4권2호
    • /
    • pp.12-20
    • /
    • 2000
  • The numerical analysis, including chemical reaction of an entire ramjet engine is studied to understand the ignition transient mechanism and the dynamic characteristics of the Integrated Rocket Ramjet System comprehensively. Details of how a subsonic combustion environment is established from the supersonic ram air after removal of the inlet port cover, are examined during the ignition transient. Various physical processes are investigated systemically, including ignition, flame propagation, flame dynamics, and vorticity evolution.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 - (Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure -)

  • 박외철
    • 한국가스학회지
    • /
    • 제7권3호
    • /
    • pp.44-50
    • /
    • 2003
  • 연료농도에 따른 대향류 화염구조의 변화를 조사하고 수치법을 검증하기 위해, 축대칭 메탄-공기 대향류화염을 모사하였다. 변형률 $a_g=20,\;60,\;90\;s^{-1}$과 연료 중 메탄의 몰분율 $x_m=20,\;50,\;80\%$를 수치매개변수로 하여, 변형율과 연료농도에 따라 온도분포, 닥트 중심축의 온도분포와 축방향 속도의 분포를 계산하였다. 축대칭 모사는 혼합분율 연소모델을 채용한 FDS로 수행하였고, 계산결과를 구체적 화학반응을 포함한 1차원 화염코드 OPPDIF의 계산결과와 비교하였다. 본 연구에서 조사한 모든 변형율과 연료농도에서 축대칭 모사의 온도 및 축방향 속도 분포가 1차원 계산결과와 잘 일치하는 것으로 나타났다. 연료농도가 증가하면 화염의 두께와 최고온도가 증가하고 반경이 감소함을 알 수 있었다.

  • PDF

정상초음파의 교란을 받는 메탄-공기 예혼합화염의 전파특성에 대한 초음파 구동 주파수의 영향 (Effects of Driving Frequency on Propagation Characteristics of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave)

  • 배대석;서항석;김정수
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.161-168
    • /
    • 2015
  • 정상초음파장의 구동 주파수가 메탄-공기 예혼합화염의 전파특성에 미치는 영향을 규명하고자 하는 실험결과를 제시한다. 고속카메라를 이용하여 화염의 전파영상을 획득하였으며, 영상 후처리를 통해 화염선단의 구조와 속도변이를 포함하는 화염의 거시적 거동을 상세히 관찰하였다. 정상초음파가 연소반응을 촉진시켜 화염 전파속도의 증대와 화염선단 구조의 변이를 유발한다는 사실에 더하여, 초음파구동 주파수와 당량비에 대한 화염거동의 종속성을 확인하였다.

복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성 (Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor)

  • 황정재;이원준;김민국;김한석
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.37-44
    • /
    • 2022
  • 본 연구에서는 SN(Swirl Number)는 같지만 코어부와 스월러부의 질량유량비(m)가 다른 저선회 노즐 2종을 설계하여 상압 연소성능 시험을 수행하였다. 각 노즐에 대해 단열화염온도에 따른 연소성능 실험을 수행하였고 화염구조 특성, NOx 배출 특성, 연소진동 모드를 파악하였다. 화염구조가 크게 차이가 있었지만 CO 배츨 특성은 유사하였고 NOx 배출 특성도 화염구조보다는 연소진동과 더 큰 관련성이 있음을 보였다. 연료노즐의 위치를 변경하여 대류지연시간을 조절하면서 연소진동 및 NOx 배출 특성을 파악하였는데 대류지연시간이 연소진동 주기의 (3+4n)/4±1/4 (n=0,1,2,...) 영역에 들어올 때 진소진동이 강하게 나타나고 반대의 경우는 연소진동이 아주 약하게 발생함을 확인하였다.

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • 한국연소학회지
    • /
    • 제9권3호
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF