• Title/Summary/Keyword: Flame Characteristics

Search Result 1,525, Processing Time 0.026 seconds

Analysis of Propionic acid Production in Joraengyi Rice Cake during Storage (조랭이떡 저장 중 천연유래 프로피온산 생성 특성 분석)

  • Park, Hee-Dae;Chae, Jung-Kyu;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.483-487
    • /
    • 2018
  • The objective of this study was to examine the natural origin of propionic acid in rice cakes by investigating the growth characteristics of the microflora and their production of propionic acid in the Joraengyi rice cake during storage period. The experiment was done in two stages within a period of three month: the rice cake fresh and contaminated with cocktail propionibacterium. The propionic acid production was analyzed according to the storage time and temperature by GC-FID (Gas chromatograph with flame ionization detector). During the storage of the fresh Joraengyi rice cake without alcohol at $30^{\circ}C$, about 95 mg/L of propionic acid was detected in 1st week, 330 mg/L in 4th week, 850 mg/L in 6th week, 970 mg/L in 8th week, and 1,040 mg/L in 12th week. During the storage of the Joraengyi rice cake which was contaminated with cocktail propionibacterium at $30^{\circ}C$, about 100 mg/L was detected from the rice cake with alcohol in the 1st week, 270 mg/L in 2nd week, about 470 mg/L in 4th week, and 660 mg/L in 8th week. This study demonstratesd the natural production of propionic acid during storage of the Joraengyi rice cake. To prevent the production, it is necessary to thoroughly manage hygiene and store it at refrigerated temperature or below $20^{\circ}C$.

Heat Risk Assessment of Wood Coated with Silicone Compounds (실리콘 화합물로 도포된 목재의 열위험성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Experiments on the combustion characteristics of untreated wood specimens and those treated with four types of silicone compounds were carried out using a cone calorimeter according to the ISO 5660-1 standard. 3-Aminopropyltrimethoxysilane (APTMS), 3-(2-aminoethylamino) propylmethyldimethoxysilane (AEAPMDMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTMS) were used as the silane compounds. The flame retardants were synthesized with sodium silicate and amino silane compounds. The measured time to ignition after combustion at an external heat flux of $50kW/m^2$ was 9 s to 11 s. Time to ignition was marked with a delayed value in the 3 s to 5 s range. The peak heat release rate ($HRR_{peak}$) was reduced by 5 to 20% compared with the uncoated specimen, and AEAPMDMS showed the highest initial fire risk. The total heat release (THR) was decreased by 1 to 22%. Compared to the untreated specimen, the fire performance index (FPI) of the specimens coated with silicone sol compounds increased by 1.5 to 2.2 fold. The fire growth index (FGI) of the AEAPMDMS specimen was increased by 30% and the others were decreased by 93 to 94%. Therefore, the fire risk of wood coated with silicone compounds was improved in terms of the heat risk properties.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

High Thermoluminescence Properties of Dy+Ce, and Dy+Na Co-Doped MgB4O7 for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy+Ce 및 Dy+Na 이중 도핑된 MgB4O7의 높은 열발광 특성)

  • Jinu Park;Nakyung Kim;Jiwoon Choi;Youngseung Choi;Sanghyuk Ryu;Sung-Jin Yang;Duck Hyeong Jung;Byungha Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • 'Tracers' are bullets that emit light at the backside so that the shooter can see the trajectory of their flight. These light-emitting bullets allow snipers to hit targets faster and more accurately. Conventional tracers are all combustion type which use the heat generated upon ignition. However, the conventional tracer has a fire risk at the impact site due to the residual flame and has a by-product that can contaminate the inside of the gun and lead to firearm failure. To resolve these problems, it is necessary to develop non-combustion-type tracers that can convert heat to luminance, so-called 'thermoluminescence (TL)'. Here, we highly improve the thermoluminescence properties of MgB4O7 through co-doping of Dy3++Ce3+ and Dy3++Na+. The presence of doping materials (Dy3+, Ce3+, Na+) was confirmed by XPS (X-ray photoelectron spectroscopy). The as-synthesized co-doped MgB4O7 was irradiated with a specific radiation dose and heated to 500 ℃under dark conditions. Different thermoluminescence characteristics were exhibited depending on the type or amounts of doping elements, and the highest luminance of 370 cd/m2 was obtained when Dy 10 % and Na 5 % were co-doped.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.