• Title/Summary/Keyword: Flame Characteristics

Search Result 1,525, Processing Time 0.023 seconds

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

An experimental study on characteristics of mixture turbulence and flame scale (미연혼합기의 난류특성과 화염 스케일에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1040-1049
    • /
    • 1996
  • The high loading combustion is accomplished by making the turbulent intensity strong and the scale small in the premixed combustor. The Da-mkoler number, which is decreased by short turbulent characteristic time or by long chemical reaction time, can make the distributed reaction flame. So we developed a doubled jet burner for high loading combustion. The doubled jet burner was designed to make the scale of the flame small by the effect of impingement and increasing shear stress with doubled jet. We investigated the turbulence characteristics of unburned mixture and visualized several flames with the typical schlieren photography. Then we studied the influence of several factors that related the scale of flame. Consequently, the doubled jet burner can make the eddy very small. And we can obtain the detail information of the flame scale through ADSF(the Average Distance between Successive Fringes) in the micro- schlieren photography. The ADSF is not a exact flame scale, but it has qualitative trend with increasing turbulent intensity. The ADSF is diminished remarkably with increasing turbulent intensity. The reason is that strong turbulent intensity makes the flame zone thick and flamelets numerous. We can confirm this fact by the signal analysis of ion currents.

Application of the Flame Hole Dynamics to a Diffusion Flame in Channel Flow

  • Lee, Su-Ryong;Yang Na;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1775-1783
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

Numerical Study on Flame Structure and NO Formation Characteristics in Oxidizer-Controlled Diffusion Flames (산화제 제어 확산화염의 화염구조 및 NO 생성 특성에 관한 수치해석적 연구)

  • Lee, Chang-Eon;Han, Ji-Ung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen -enhanced(CH$_4$/O$_2$-$N_2$) and oxygen-enhanced-EGR(CH$_4$/O$_2$-$CO_2$) counter diffusion flame with various strain rates. A small amount of $N_2$is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$contamination by $O_2$production process or air infiltration. The results are as follows : In CH$_4$/O$_2$-$CO_2$flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In CH$_4$/O$_2$-$N_2$flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case CH$_4$/O$_2$-$CO_2$flame contains more than 40% $CO_2$it is possible to maintain the same EINO as that of CH$_4$/Air flame with accomplishing higher temperature than that of CH$_4$/Air flame. EINO decreases with increasing strain rate, and those effects are augmented in CH$_4$/O$_2$flame.

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-85
    • /
    • 2000
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

Analysis of Stratified Co-Flow Flames from Chemiluminescence Images (화염 발광 가시화를 이용한 성층화된 동축류 화염 특성 분석)

  • Ahn, Taekook;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.185-187
    • /
    • 2012
  • The characteristics of stratified co-flow flames have been investigated from the flame chemiluminescence images. The fuel lean premixed flame could be stabilized with a fuel rich premixed flames that is generated with the supply of fuel through the inner nozzle. The penetration of outer region lean premixture into the fuel stream produced a lifted rich premixed flame at the center. Chemiluminescence images of OH, CH, and $C_2$ radicals indicated that the way of stratification of fuel/air mixture under various operating conditions.

  • PDF

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

The Research & Development of Infra-Red Flame Detector (적외선 불꽃감지기 개발연구)

  • 이복영;권오승;정창기;박상태;조성수
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • The radiant energy from a flaming fire of fuels containing carbonaceous material can be applied to fast growing fire. Raiant energy sensinsing technique applied detectors are ultimately effective when early detecting fire alarm system is required or the smoke and heat detectors can not be applied. This study investigated the characteristics of sun light, artificial light and flame radiation light and the foundation technique of flame detecting is established. Pyroelectric element proper for the characteristics of flame radiant energy developed and circuit stabilizing technique, electro-magnetic immunity technique, durable and reliable operating technique to circuits developed.

  • PDF

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF