• Title/Summary/Keyword: Fixed-Bed Catalytic Reactor

Search Result 102, Processing Time 0.016 seconds

Steam Reforming of Tar Produced from Biomass Gasification Using Ni/Ru-X/Al2O3 (X=K or Mn) Catalyst (Ni/Ru-X/Al2O3 (X=K or Mn) 촉매를 이용한 바이오매스 가스화 타르의 수증기개질)

  • Oh, Gunung;Park, Seo Yoon;Lee, Jae-Goo;Kim, Yong Ku;Ra, Ho Won;Seo, Myung Won;Yoon, Sang Jun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • Steam reforming of tar produced from biomass gasification was conducted using several Ni-based catalysts. In labscale, the catalytic steam reforming of toluene which is a major component of biomass tar was studied. A fixed bed reactor was used at various temperatures of 400-800 ℃. Ru (0.6 wt%) and Mn or K (1 wt%) were applied as a promoter in Ni based catalysts. Generally, Ni/Ru-K/Al2O3 catalyst shows higher performance on steam reforming of toluene than Ni/Ru-Mn/Al2O3 catalyst. Used catalysts were analyzed by XRD and TGA to detect sintering and carbon deposition. Base on the lab-scale studies, the monolith and pellet type catalysts were tested in 1 ton/day scale biomass gasification system. Ni/Ru-K/Al2O3 monolith catalyst shows high tar reforming performance at high temperature. In addition, Ni/Ru-Mn/Al2O3 monolith catalyst was showed deactivation with operation time. Reforming performance of Ni/Ru-K/Al2O3 pellet catalyst which showed 66.7% tar conversion at 587 ℃ was compared to regenerated one. Overall, Ni/Ru-K/Al2O3 pellet catalyst shows higher stability and performance than other used catalysts.

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.