• 제목/요약/키워드: Fixed grid

검색결과 246건 처리시간 0.03초

소형풍력발전시스템을 위한 퍼지로직 기반의 가변 스텝 사이즈 MPPT 제어 (Variable Step-Size MPPT Control based on Fuzzy Logic for a Small Wind Power System)

  • 최대근;이교범
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.205-212
    • /
    • 2012
  • This paper proposes the fuzzy logic based variable step-size MPPT (Maximum Power Point Tracking) method for the stability at the steady state and the improvement of the transient response in the wind power system. If the change value of duty ratio is set on stability of the steady state, MPPT control traces to maximum power point slowly. And if the change value is set on improvement of the transient response, the system output oscillates at the maximum power point. By adjusting the step size with fuzzy logic, it can be improved the MPPT response speed and stability at steady state when MPPT control is performed to track the maximum power point. The effectiveness of the proposed method has been verified by simulations and experimental results.

대입경 락필재료에 대한 수치시험실 활용해석 (Application simulations as numerical laboratory for large diameter rockfill materials)

  • 전제성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

양방향 펄스전원을 이용한 NO 가스의 방전처리 (Discharge Processes of NO Gas Using Bidirectional Pulsed Voltage)

  • 주홍진;박정호;심재학;고광철;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1682-1684
    • /
    • 2001
  • In removing the flue-gas using electrical discharge method, it is important to dissociate or ionize the atoms and molecules by the collisions with energetic electrons and it produces the radicals that are used to decompose the pollutants. For that purpose, a bidirectional pulsed voltage is used to produce lots of energetic electrons efficiently and increase the power efficiency. The simulation is performed with changing the pulsewidth under the fixed applied voltage. The particle-mesh model coupling the NGP(nearest-grid-point) to FEM(finite element method) is used to simulate the behavior of electrons and the spatio-temporal variation of the electric field for the streamer in discharge tube.

  • PDF

후방 발열이 있는 경사 충격파의 불안정성 (INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION)

  • 최정열;신재렬;조덕래
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

임의로 움직이는 물체 주위의 유동 해석을 위한 피드백 강제 외력을 이용한 가상경계방법 (AN IMMERSED BOUNDARY METHOD WITH FEEDBACK FORCING FOR SIMULATION OF FLOW AROUND AN ARBITRARILY MOVING BODY)

  • 신수재;황위희;성형진
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.14-20
    • /
    • 2007
  • We present an improved immersed boundary method for computing incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. The main idea is to incorporate feedback forcing scheme of virtual boundary method with Peskin's regularized delta function approach in order to use large CFL number and transfer quantities between Eulerian and Lagrangian domain effectively. From the analysis of stability limits and effects of feedback forcing gains, optimum regions of the feedback forcing are suggested.

미소유체요소 내부유동의 3차원 측정 및 수치해석 (Three-dimensional Flow Structure inside a Plastic Microfluidic Element)

  • 이인원;안광협;남영석;이인섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.419-422
    • /
    • 2002
  • A three-dimensional inlet flow structure inside a microfluidic element has been investigated using a micro-PIV(particle image velocimetry) measurement as well as a numerical analysis. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. For the numerical analysis, a commercial software CFD-ACE+(V6.6) was employed for comparison with experimental data. Fixed pressure boundary condition and a 39900 structured grid system was used for numerical analysis. Velocity vector fields with a resolution of $6.7{\times}6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent melding process.

  • PDF

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

배전선로에 유도발전기 연결시 역률 변동에 관한 연구 (A study on the variation of power factor by connection of the induction generator to the distribution line)

  • 김종겸;박영진;이경배;김영국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1469-1470
    • /
    • 2015
  • Recently induction generator has been applied to many small hydro power plants. Induction generator needs a reactive power for magnetization. The reactive power of induction generator is being supplied from the supply side mostly. The use of induction generators in the power distribution grid can affect the power factor. The power factor of induction generator is fixed already during production. The power factor in the distribution system is due to the increase or decrease of the load rather than due to the induction generator. In this study, we analyzed how the power factor is changed according to the load increase or decrease in the distribution lines.

  • PDF

임의로 움직이는 물체 주위의 유동 해석을 위한 피드백 강제 외력을 이용한 가상경계방법 (AN IMMERSED BOUNDARY METHOD WITH FEEDBACK FORCING FOR SIMULATION OF FLOW AROUND AN ARBITRARILY MOVING BODY)

  • 신수재;황위희;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.23-29
    • /
    • 2007
  • We present an improved immersed boundary method for computing incompressible viscous flow around an arbitrarily moving body on a fixed computational grid The main idea is to incorporate feedback forcing scheme of virtual boundary method with Peskin's regularized delta function approach in order to use large CFL number and transfer quantities between Eulerian and Lagrangian domain effectively. From the analysis of stability limits and effects of feedback forcing gains, optimum regions of the feedback forcing are suggested.

  • PDF

고점도 유동장이 사출-압축 성형에 미치는 영향 (Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids)

  • 박균명;김청균
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.