• Title/Summary/Keyword: Fixed Joint

Search Result 327, Processing Time 0.025 seconds

Simulator of Accuracy Prediction for Developing Machine Structures (기계장비의 구조 특성 예측 시뮬레이터)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

A CASE REPORT FOR CONSTRUCTION OF FIXED BRIDGE BY ONE PIECE CASTING TECHNIQUES (One Piece Casting법에 의한 Fixed Bridge)

  • Kim, In-Chul;Kim, Kwang-Nam
    • The Journal of the Korean dental association
    • /
    • v.10 no.12
    • /
    • pp.809-812
    • /
    • 1972
  • This present paper is concerned with four unit fixed bridge construction by one piece casting technique in the case of missing of upper left second premolar and first molar. The authors had good clinical results with following advantages. 1. The complete bridge can be delivered to the patient for two appointments. 2. The laboratory procedures for solder joint are not necessary. 3. A one piece casting can be properly shaped without weak joints. 4. The casting can be heat-treated to insure an ideal molecular structure. 5. Porcelain veneers can be applied without weakening or melting solder joints.

  • PDF

Moment-Rotation Relation of Steel Connections with Fixed-End Restraint (단부구속도에 따른 철골 접합부의 모멘트-회전각 관계에 관한 연구)

  • Ahn, Hyung-Joon;Kim, Keon-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.219-223
    • /
    • 2002
  • The actual behavior of joint is traditionally disregarded in steel frame design. In fact, the structural analysis of steel frames is generally carried out by assuming that joints fulfil the ideal condition of either a hinge or a fixed-end restraints. In this way, calculations are made somewhat simpler, but the structural model is not able to reflect the actual structural response. Therefore, steel frame classification system for estimation or analysis about behavior of steel frame should be established, and range that each connections belongs should be divided definitely. This research presents realistic and practical moment-rotation relation through investigation and analysis of steel frame beam-to-column classification system.

COMMON COUPLED FIXED POINT RESULTS FOR HYBRID PAIR OF MAPPING UNDER GENERALIZED (𝜓, 𝜃, 𝜑)-CONTRACTION WITH APPLICATION

  • Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.111-131
    • /
    • 2019
  • We introduce (CLRg) property for hybrid pair $F:X{\times}X{\rightarrow}2^X$ and $g:X{\rightarrow}X$. We also introduce joint common limit range (JCLR) property for two hybrid pairs $F,G:X{\times}X{\rightarrow}2^X$ and $f,g:X{\rightarrow}X$. We also establish some common coupled fixed point theorems for hybrid pair of mappings under generalized (${\psi},{\theta},{\varphi}$)-contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled coincidence point, we do not employ the condition of continuity of any mapping involved therein. As an application, we study the existence and uniqueness of the solution to an integral equation. We also give an example to demonstrate the degree of validity of our hypothesis. The results we obtain generalize, extend and improve several recent results in the existing literature.

Adaptive Step-size Algorithm for the AIC in the Space-time Coded DS-CDMA System (시공간부호화된 DS-CDMA 시스템에서 적응스텝크기 알고리듬을 적용한 간섭제거수신기)

  • Yi, Joo-Hyun;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.265-268
    • /
    • 2004
  • In this paper. we propose an adaptive step-size algorithm for the adaptive interference canceller (AIC) in the space-time trellis coded DS-CDMA system. In the AIC, the performance of the blind LMS algorithms that updates the tap-weight vector of the AIC is heavily dependent on the choice of step-size. To improve the performance of the fixed step-size AIC (FS-AIC), the regular adaptive step-size algorithm is extended in complex domain and applied to the joint AIC and ML decoder scheme. Simulation results show that the joint adaptive step-size AIC (AS-AIC) and ML decoder scheme using the proposed algorithm has boner performance than not only the conventional ML decoder but also the joint FS-AIC and ML decoder scheme without much increase of the decoding delay and complexity.

  • PDF

A Study on Design of a Damper for Reducing Torsional Vibrations of a Driveline with Universal Joints (Universal Joint를 갖는 구동축 시스템의 비틀림 진동 감소를 위한 Damper의 적정설계에 관한 연구)

  • Park, Bo-Yong;Song, Chang-Seop;Kang Hyo-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-145
    • /
    • 1991
  • A universal joint is a connecting device of two hinges which can transmit torque from one shaft to another at fixed or at varying angles of intersection. It has been used properly not only as rotational but also as intermittent motion. For the particular kinematics condition of a universal joint, torsional and bending vibrations are produced excessively in an elastic driveline. In this paper only the torsional vibration behavior of a driveline with universal joints is analyzed numerically with the discrete model and a design method of the dynamic vibration damper is proposed, in order to reduce torsional vibrations especially in resonance region as a result of parametric variation.

  • PDF

Static Gait Generation of Quadruped Walking Robot (4각 보행 로봇의 정적 걸음새 생성)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.