• 제목/요약/키워드: Five-phase Induction Motor Control

검색결과 21건 처리시간 0.019초

Modified Direct Torque Control System of Five Phase Induction Motor

  • Kim, Nam-Hun;Kim, Min-Huei
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.266-271
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) of five-phase induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase IM drives present unique characteristics. One of them is the ability of enhancing the torque producing capability of the motor. Also five-phase motor drives possess many others advantage compared with the traditional three-phase motor drives. Such as, reducing the amplitude and increasing of frequency of torque pulsation, reducing amplitude of current per phase without increasing the voltage per phase and increasing the reliability. The direct torque control method is advantageous when it is applied to the five-phase IM. Because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors by the three-phase inverter. The 32 space voltage vectors are divided into three groups according to their magnitudes. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is proposed. Therefore, a more precise flux and torque control algorithm for the five-phase IM drives can be suggested and explained. For presenting the superior performance of the pro-posed direct torque control, experimental results is presented using a 32 bit fixed point TMS320F2812 digital signal processor

Selection of Voltage Vectors in Three-Level Five-Phase Direct Torque Control for Performance Improvement

  • Tatte, Yogesh N.;Aware, Mohan V.
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2162-2172
    • /
    • 2016
  • This paper presents a Direct Torque Control (DTC) strategy for the five-phase induction motor driven by a three-level five-phase inverter in order to improve the performance of the five-phase induction motor. In the proposed DTC technique, only 22 voltage vectors out of 243 available voltage vectors in a three-level five-phase inverter are selected and are divided in 10 sectors each with a width of $36^{\circ}$. The four different DTC combinations (DTC-I, II, III and IV) for a three-level five-phase induction motor drive are investigated for improving the performance of five-phase induction motor. All four of the DTC strategies utilize a combination of the same large and zero voltage vectors, but with different medium voltage vectors. Out of these four techniques, DTC-II gives the best performance when compared to the others. This DTC-II technique is analyzed in detail for improvements in the performance of five-phase induction motor in terms of torque ripple, x-y stator flux and Total Harmonics Distortion (THD) of the stator phase current when compared to its two-level counterparts. To verify the effectiveness of the proposed three-level five-phase DTC control strategy, a DSP based experimental system is build. Simulation and experimental results are provided in order to validate the proposed DTC technique.

제3 고조파 전류성분 주입에 의한 5상 농형 유도전동기의 속도제어 특성 (A Speed Control Characteristics for Five-Phase Squirrel-Cage Induction Motor Injecting 3rd Current Harmonics Component)

  • 김민회;김남훈
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.279-288
    • /
    • 2013
  • This paper proposes a improved speed control system for five-phase squirrel-cage induction motor(IM) injecting 3rd. current harmonic components with field oriented control (FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current in order to high response characteristics. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[kW] induction motor.

제3 고조파 전류성분의 영향을 고려한 5상 농형 유도전동기의 벡터제어 시스템 (A Vector Control System for Five-Phase Squirrel-Cage Induction Motor Considering Effects of 3rd Current Harmonics Component)

  • 김민회;김남훈
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.206-213
    • /
    • 2012
  • This paper propose a improved speed control system for five-phase squirrel-cage induction motor(IM) considering effects of 3rd. harmonic current components with field oriented control(FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] induction motor.

과전류 부하에서 5상 농형 유도전동기의 정수 특성 (Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load)

  • 김민회
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

주파수 변화에 따른 5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency)

  • 김민희
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템 (The Modified Direct Torque Control System for Five-Phase Induction Motor Drives)

  • 김민회;김남훈;백원식
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.138-147
    • /
    • 2009
  • 본 논문에서는 5상 농형유도전동기(Five-phase squirrel-cage induction motor)의 수정된 직접 토크제어(Direct torque control, DTC) 시스템을 제안한다. 5상 유도전동기 구동은 추가적인 자유도로 인하여 개선된 특성이 얻어짐과 동시에 일반적인 3상 유도전동기에 비해 토크의 맥동이 감소하며, 신뢰성 증가와 같은 장점을 가진다. 5상 유도전동기의 직접 토크제어는 인버터 구동시스템이 기존의 3상 인버터가 8개의 공간전압 벡터를 가지고 있는 것에 비해서 32개의 공간전압 벡터를 제공하기 때문에 여러 가지 장점이 있다. 그러나 5상 전동기의 경우는 제3공간 고조파 성분으로 인하여 구조적인 단점을 가지고 있어 고조파 성분의 전류제어가 요구된다. 따라서 이 논문에서는 5상 유도전동기의 특성을 개선하기 위하여 제3고조파 전류성분을 제어할 수 있는 수정된 직접 토크제어 시스템을 제시한다. 전통적인 5상 유도전동기의 직접 토크제어와 제안된 직접 토크제어 시스템의 운전특성을 검증하기 위하여, 디지털 제어기로 32[bit] 고정소수점 DSP인 TMS320F2812를 사용하여 2.2[kW] 5상 유도전동기의 속도제어 시스템을 구성하여 동특성을 관찰한 결과 우수한 특성이 얻어짐을 확인하였다.

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템 (A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor)

  • 김민회;최성운
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법 (Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System)

  • 백승구;신혜웅;강성윤;박춘수;이교범
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.