Journal of The Institute of Information and Telecommunication Facilities Engineering
/
v.8
no.1
/
pp.1-5
/
2009
In this paper, we propose a method that applies Vector Fitting (VF) technique to the equivalent circuit model for RF passive components. These days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI/SI (Power Integrity/Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time consuming task. Therefore equivalent circuit model using RF passive component is important. VF schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip line structure.
Tight-fitting clothing pattern reflecting the accurate information of the 3D body shape has been one of the challenges for garment industry, however, fitting problems still exist. The objectives of the paper is to develop a 2D pattern which fits tightly to the 3D human scan data for sports suits that need comfort and function for maximum performance. In this study, the user graphic interface application software for the semi-automatic garment pattern generation has been implemented using the triangle simplification scheme together with 2D projections of free-falling of 3D surface polygons keeping the original 3D surface area preservation. A typical application of the developed pattern to the functional body suits is presented and verification of the proposed method is also provided.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.9
/
pp.1232-1238
/
2018
This paper proposes methods for improving mass spectral resolution for a gas chromatograph mass spectrometer. The slope signs of the 1st and 2nd fitting functions for the ion signal block of each mass index are obtained, and the unnecessary element signals in the ion signal block are removed. The spectrum can be obtained by obtaining the second-order fitting function of the reconstructed ion signal block using only the effective ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed methods, computer simulations were performed using the actual ion signals obtained from the GC-MS system under development. Simulation results show that the proposed method is valid.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2000.05a
/
pp.460-464
/
2000
As device dimensions are lastly scaled down, impact ionization(I.I.) events are very important to analyze hot carrier transport in high energy region, and the exact model of impact ionization is demanded on device simulation. We calculate full band model by empirical pseudopotential method and the impact ionization rate is derived from modified Keldysh formula. We calculate impact ionization coefficients by full band Monte Carlo simulator to investigate temperature-and field-dependent characteristics of impact ionization for GaAs. Resultly impact ionization coefficients are In good agreement with experimental values at 300k. We know energy is increasing along increasing the field. while energy is decreasing along increasing the temperature since the phonon scattering rates for omission mode are very high at high temperature. The logarithmic fitting function of impact ionization coefficients is described as a second orders function for temperature and field. The residuals of the logarithmic fitting function are mostly within 5%. We know, therefore, logarithm of impact ionization coefficients has quadratic dependence on temperature and field, and we can save time of calculating the temperature- and field-dependent impact ionization coefficients.
Machine learning is the process of constructing a cost function using learning data used for learning and an artificial neural network to predict the data, and finding parameters that minimize the cost function. Parameters are changed by using the gradient-based method of the cost function. The more complex the digital signal and the more complex the problem to be learned, the more complex and deeper the structure of the artificial neural network. Such a complex and deep neural network structure can cause over-fitting problems. In order to avoid over-fitting, a weight decay regularization method of parameters is used. We additionally use the value of the cost function in this method. In this way, the accuracy of machine learning is improved, and the superiority is confirmed through numerical experiments. These results derive accurate values for a wide range of artificial intelligence data through machine learning.
The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.
Journal of the Korea Society of Computer and Information
/
v.3
no.2
/
pp.85-97
/
1998
The existing edge detection methods can not represent the real edge of object at fitting point or detect the edge which has unsufficient connecting trait. Especially, the two-fold thick edge detected by these methods cannot coincide real boundary of subject and it's location. To overcome these problems, we introduce the Genetic Algorithm(GA) in edge detection. The energy function is the value of fixel's satisfaction degree to edge condition. And it consists of the fitness value to image formation type, fitness value to connecting trait to it's neighboring edge and evalulation function which can represents the edge at fitting point as one fixel. This method is superior to remove the noise in edge detection than the existing methods. And it also detects the clear and exact edge because it can find the one fixel which is located at fitting point and has strong connecting trait.
An efficient method is developed for mold thermal cycle analysis in repeated forming process, which is well suited to the analysis in TV glass production. plunger, which is a mold to press-form the glass, undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state in the end. If analyzed straightforwardly of this problem, it leads to more than 80 cycles to get reasonable solution, and it is yet hard to setup stopping creteria due to extremely slow convergence. An exponential fitting method is proposed to solve the problem, where an exponential function is found to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the function value at infinite time. From numerical implementation, it is found that the method reduces the number of cycles dramatically to only $6{\sim}15$ cycles to reach accurate solution within $1^{\circ}$ error. A system for the analysis is contructed, in which the thermal analysis is performed by commercial software ANSYS, and the fitting of the result is done by IMSL library.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.4
/
pp.1063-1075
/
2012
To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.
Park, Jun-Oh;Ko, Byoung-Chul;Park, Hee-Jun;Nam, Jae-Yeal
The KIPS Transactions:PartB
/
v.19B
no.3
/
pp.201-208
/
2012
Accurately segmenting lumen border in intravascular ultrasound images (IVUS) is very important to study vascular wall architecture for diagnosis of the cardiovascular diseases. After each of IVUS image is transformed to a polar coordinated image, initial points are detected using wavelet transform. Then, lumen border is initialized as the set of important points using non parametric probability density function and smoothing function by removing outlier initial points occurred by noises and artifacts. Finally, polynomial curve fitting is applied to obtain real lumen border using filtered important points. The evaluation of proposed method was performed with related method and the proposed method produced accurate lumen contour detection when compared to another method in most types of IVUS images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.