• Title/Summary/Keyword: Fitted curve

Search Result 300, Processing Time 0.044 seconds

Forming Limit Curve Optimization using Design of Experiments (실험계획법을 이용한 성형한계곡선 최적화 연구)

  • Lim, H.T.;Lee, B.J.;Rhyim, Y.M.;Kim, B.K.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • Forming limit diagram is created by graphical illustration indicating major and minor strain. In order to provide the criterion for forming safety, FLC(forming limit curve) need to be fitted to the diagram. However, the standard method for the strain measurement and FLC plotting are not fixed yet, which results in inconvenience in digitalized analysis. In this study, new construction method for FLC was suggested in order to minimize operator dependency. For this purpose, major and minor strain were measured automatically and analyzed. Then, a second order equation is adopted to fit the FLC. Optimized by response surface method was performed to ensure particular characteristics of the FLC.

  • PDF

Growth Data of Broiler Chickens Fitted to Gompertz Function

  • Duan-yai, S.;Young, B.A.;Lisle, A.;Coutts, J.A.;Gaughan, J.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1177-1180
    • /
    • 1999
  • This study describes the growth of broiler chickens to the two forms of Gompertz function for application in broiler production models. The first form is based on the estimated mature weight ($W_A$), while the second is based on the estimated hatch weight ($W_O$). Both equations gave identical estimation because they are mathematically identical. To fit the growth curve of commercial broilers that marketed at 35-42 days, it is unnecessary to keep broilers to near maturity (> day 140) to obtain growth data for deriving the Gompertz function. This date does not improve the curve fitting of the early growing period. Additionally, a high mortality and health problem occurred to this type of chicken after day 105.

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

Development of Image Post-processing System for the Cerebral Perfusion Information Mapping of MR Image (MR영상의 뇌관류 정보 Mapping을 위한 영상후처리 시스템개발)

  • 이상민;강경훈;장두봉;김광열;김영일;신태민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • This paper works on development of an algorithm for mapping of cerebral perfusion parameters using the gamma-variate curve fitting. The signal intensity variate curve according to time measured in each pixel of perfusion MRI is nonlinear, and various hemodynamic parameters are not computed accurately. Levenberg-Marquardt algorithm(LMA), nonlinear optimum algorithm with high convergent speed and stability, is used to compute them. That is, the signal intensity variate curve is fitted by the gamma-variate function. Various hemodynamic parameters - Cerebral Blood Volume(C.B.V), Mean Transit Time(M.T.T), Cerebral Blood Flow(C.B.F), Time-to-Peak(T.T.P), Bolus Arrival Time(B.A.T), Maximum Slope(M.S) - are computed using LMA.

  • PDF

On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions (다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산)

  • Nam, Hae-Kon;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF

Estimation of Soil Water Characteristic Curve and Unsaturated Permeability Coefficient for Domestic Weathered Grainite Soil (국내 풍화토의 함수특성곡선 및 불포화 투수계수 추정에 관한 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Hye-Ji;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.334-341
    • /
    • 2004
  • The coefficient of permeability is one of the most important properties in unsaturated soils. The permeability varies with change in the water content as the soil water characteristic curve(SWCC) does. Thus the permeability curve of unsaturated soils has the similar shape with the soil-water characteristic curve(SWCC). Therefore, the methodologies have been studied to simply predict the unsaturated permeability from the SWCC. In this study, the experimental tests of SWCC and permeability were carried out for domestic weathered granite soils. The SWCC test results were fitted to Fredlund and Xing's SWCC equation and then it was found that there are some relationships between the parameters of SWCC equation and the basic soil properties. Accordingly we used an ANN(artificial neural network) model to obtain the SWCC parameters from the basic soil properties. Finally, the coefficients of permeability were predicted from these results by a prediction model.

  • PDF

Effects of Counterflow Burner Diameter on the Characteristics of Flame Extinction in C-curve (C-곡선상의 화염 소화 특성에 있어서 대향류 버너직경 효과)

  • Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kee, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2009
  • Experiments are conducted to elucidate effects of counterflow burner diameter on flame extinction behaviors in C-curve. Present experimental results with burner diameters of 18, 26, and 50 mm in normal-gravity are compared with the numerical result of Oppdif code as well as the previous experimental results in micro-gravity. The turning point migrates to a higher global strain rate as burner diameter decreases. It is shown that the C-curve with the burner diameter of 50mm is best-fitted to the numerical result of Oppdif code and the previous micro-gravity results also excurse to the numerical result. This suggests that the precise C-curve can be obtained only with an appreciably large burner. The main reason why these differences appear is shown to be attributed to the transition of shrinking flame disk to flame hole due to strong effects of radial conduction heat loss, which is the typical extinction characteristics of low strain rate flames with a finite burner diameter in a counterflow diffusion flame.

ROC Curve Fitting with Normal Mixtures (정규혼합분포를 이용한 ROC 분석)

  • Hong, Chong-Sun;Lee, Won-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.269-278
    • /
    • 2011
  • There are many researches that have considered the distribution functions and appropriate covariates corresponding to the scores in order to improve the accuracy of a diagnostic test, including the ROC curve that is represented with the relations of the sensitivity and the specificity. The ROC analysis was used by the regression model including some covariates under the assumptions that its distribution function is known or estimable. In this work, we consider a general situation that both the distribution function and the elects of covariates are unknown. For the ROC analysis, the mixtures of normal distributions are used to estimate the distribution function fitted to the credit evaluation data that is consisted of the score random variable and two sub-populations of parameters. The AUC measure is explored to compare with the nonparametric and empirical ROC curve. We conclude that the method using normal mixtures is fitted to the classical one better than other methods.

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part II - Approximation and Application of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제2부 - 보정 함수의 근사 및 응용)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • In Part I, developed was a method to obtain the stress field due to an edge dislocation that locates in an elastic half plane beneath the contact edge of an elastically similar square wedge. Essential result was the corrective functions which incorporate a traction free condition of the free surfaces. In the sequel to Part I, features of the corrective functions, Fkij,(k = x, y;i,j = x,y) are investigated in this Part II at first. It is found that Fxxx(ŷ) = Fxyx(ŷ) where ŷ = y/η and η being the location of an edge dislocation on the y axis. When compared with the corrective functions derived for the case of an edge dislocation at x = ξ, analogy is found when the indices of y and x are exchanged with each other as can be readily expected. The corrective functions are curve fitted by using the scatter data generated using a numerical technique. The algebraic form for the curve fitting is designed as Fkij(ŷ) = $\frac{1}{\hat{y}^{1-{\lambda}}I+yp}$$\sum_{q=0}^{m}{\left}$$\left[A_q\left(\frac{\hat{y}}{1+\hat{y}} \right)^q \right]$ where λI=0.5445, the eigenvalue of the adhesive complete contact problem introduced in Part I. To investigate the exponent of Fkij, i.e.(1 - λI) and p, Log|Fkij|(ŷ)-Log|(ŷ)| is plotted and investigated. All the coefficients and powers in the algebraic form of the corrective functions are obtained using Mathematica. Method of analyzing a surface perpendicular crack emanated from the complete contact edge is explained as an application of the curve-fitted corrective functions.