• Title/Summary/Keyword: Fission Source Acceleration

Search Result 4, Processing Time 0.024 seconds

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

A hybrid neutronics method with novel fission diffusion synthetic acceleration for criticality calculations

  • Jiahao Chen;Jason Hou;Kostadin Ivanov
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1428-1438
    • /
    • 2023
  • A novel Fission Diffusion Synthetic Acceleration (FDSA) method is developed and implemented as a part of a hybrid neutronics method for source convergence acceleration and variance reduction in Monte Carlo (MC) criticality calculations. The acceleration of the MC calculation stems from constructing a synthetic operator and solving a low-order problem using information obtained from previous MC calculations. By applying the P1 approximation, two correction terms, one for the scalar flux and the other for the current, can be solved in the low-order problem and applied to the transport solution. A variety of one-dimensional (1-D) and two-dimensional (2-D) numerical tests are constructed to demonstrate the performance of FDSA in comparison with the standalone MC method and the coupled MC and Coarse Mesh Finite Difference (MC-CMFD) method on both intended purposes. The comparison results show that the acceleration by a factor of 3-10 can be expected for source convergence and the reduction in MC variance is comparable to CMFD in both slab and full core geometries, although the effectiveness of such hybrid methods is limited to systems with small dominance ratios.

SOME OUTSTANDING PROBLEMS IN NEUTRON TRANSPORT COMPUTATION

  • Cho, Nam-Zin;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.381-390
    • /
    • 2009
  • This article provides selects of outstanding problems in computational neutron transport, with some suggested approaches thereto, as follows: i) ray effect in discrete ordinates method, ii) diffusion synthetic acceleration in strongly heterogeneous problems, iii) method of characteristics extension to three-dimensional geometry, iv) fission source and $k_{eff}$ convergence in Monte Carlo, v) depletion in Monte Carlo, vi) nuclear data evaluation, and vii) uncertainty estimation, including covariance data.

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.