• Title/Summary/Keyword: Fission Products

Search Result 173, Processing Time 0.031 seconds

Validation of nuclide depletion capabilities in Monte Carlo code MCS

  • Ebiwonjumi, Bamidele;Lee, Hyunsuk;Kim, Wonkyeong;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1907-1916
    • /
    • 2020
  • In this work, the depletion capability implemented in Monte Carlo code MCS is investigated to predict the isotopic compositions of spent nuclear fuel (SNF). By comparison of MCS calculation results to post irradiation examination (PIE) data obtained from one pressurized water reactor (PWR), the validation of this capability is conducted. The depletion analysis is performed with the ENDF/B-VII.1 library and a fuel assembly model. The transmutation equation is solved by the Chebyshev Rational Approximation Method (CRAM) with a depletion chain of 3820 isotopes. 18 actinides and 19 fission products are analyzed in 14 SNF samples. The effect of statistical uncertainties on the calculated number densities is discussed. On average, most of the actinides and fission products analyzed are predicted within ±6% of the experiment. MCS depletion results are also compared to other depletion codes based on publicly reported information in literature. The code-to-code analysis shows comparable accuracy. Overall, it is demonstrated that the depletion capability in MCS can be reliably applied in the prediction of SNF isotopic inventory.

Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

  • Zheng, Xiaoyu;Ishikawa, Jun;Sugiyama, Tomoyuki;Maruyama, Yu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.434-441
    • /
    • 2017
  • Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

An Improvement of Estimation Method of Source Term to the Environment for Interfacing System LOCA for Typical PWR Using MELCOR code

  • Han, Seok-Jung;Kim, Tae-Woon;Ahn, Kwang-Il
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.106-113
    • /
    • 2017
  • Background: Interfacing-system loss-of-coolant-accident (ISLOCA) has been identified as the most hazardous accident scenario in the typical PWR plants. The present study as an effort to improve the knowledge of the source term to the environment during ISLOCA focuses on an improvement of the estimation method. Materials and Methods: The improvement was performed to take into account an effect of broken pipeline and auxiliary building structures relevant to ISLOCA. An estimation of the source term to the environment was for the OPR-1000 plants by MELOCR code version 1.8.6. Results and Discussion: The key features of the source term showed that the massive amount of fission products departed from the beginning of core degradation to the vessel breach. Conclusion: The release amount of fission products may be affected by the broken pipeline and the auxiliary building structure associated with release pathway.

Study of the Effect of (U0.8Pu0.2)O2 Uranium-Plutonium Mixed Fuel Fission Products on a Living Organism

  • Baimukhanova, Ayagoz;Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.965-974
    • /
    • 2016
  • The article describes the results of experiments conducted on pigs to determine the effect of plutonium, which is the most radiotoxic and highly active element in the range of mixed fuel $(U_{0.8}Pu_{0.2})O_2$ fission products, on living organisms. The results will allow empirical prediction of the emergency plutonium radiation dose for various organs and tissues of humans in case of an accident in a reactor running on mixed fuel $(U_{0.8}Pu_{0.2})O_2$.

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF

An analysis of neutron sources and gamma-ray in spent fuels using SCALE-ORIGEN-ARP (SCALE-ORIGEN-ARP를 이용한 사용후핵연료 내 중성자 및 감마선원 분석)

  • So-Hee Cha;Kwang-Heon Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.84-93
    • /
    • 2023
  • The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.

FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding (핵연료 피복관용 다중층 SiC 복합체 튜브의 Hoop Stress 전산모사 연구)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.435-441
    • /
    • 2014
  • Silicon carbide-based ceramics and their composites have been studied for application to fusion and advanced fission energy systems. For fission reactors, $SiC_f$/SiC composites can be applied to core structural materials. Multilayered SiC composite fuel cladding, owing to its superior high temperature strength and low hydrogen generation under severe accident conditions, is a candidate for the replacement of zirconium alloy cladding. The SiC composite cladding has to retain its mechanical properties and original structure under the inner pressure caused by fission products; as such it can be applied as a cladding in fission reactor. A hoop strength test using an expandable polyurethane plug was designed in order to evaluate the mechanical properties of the fuel cladding. In this paper, a hoop strength test of the multilayered SiC composite tube for nuclear fuel cladding was simulated using FEA. The stress caused by the plug was distributed nonuniformly because of the friction coefficient difference between the inner surface of the tube and the plug. Hoop stress and shear stress at the tube was evaluated and the relationship between the concentrated stress at the inner layer of the tube and the fracture behavior of the tube was investigated.

A Comprehensive Swelling Model of Silicide Dispersion Fuel for Research Reactor (연구로용 우라늄실리사이드 분산형 핵연료의 팽윤모델)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.40-51
    • /
    • 1992
  • One of the important irradiation performance characteristics of the silicide dispersion fuel element in research reactors is the diameteral increase resulting from fuel swelling. This paper, will attempt to develop a physical model for the fuel swelling, DFSWELL, by analyzing the basic irradiation behaviours and some experimental evidences. From the experimental evidences, it was shown that the volume changes in irradiated U$_3$Si-Al were strongly dependent on temperature and fission rate. The quantitative-amount of swelling for silicide fuel is estimated by considering temperature, fission rate, solid fission product build-up and gas bubble behavior. The swelling for the silicide fuel is comprised of three major components : i ) a volume change due to the formation of an interfacial layer between the fuel particle and matrix. ii ) a volume change due to the accumulation of gas bubble nucleation iii ) a volume change due to the accumulation of solid fission products The DFSWELL model which takes into account the above three major physical components predicts well the absolute magnitude of silicide fuel swelling in accordance with the power histories in comparison with the experimental data.

  • PDF

Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Rahgoshay, Mohammad;Sayareh, Reza;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.975-981
    • /
    • 2016
  • The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

Characteristic Feature of Inductively Coupled Plasma Atomic Emission Spectrometer/Shielding System and Evaluation of Its Applicability to Analysis of Radioactive Materials (유도 결합 플라스마 원자방출분광기/차폐 시스템의 특성 및 방사성 물질 분석에 대한 적용성 평가)

  • Lee, Chang Heon;Suh, Moo Yul;Choi, Kae Chun;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.474-483
    • /
    • 2000
  • An inductively coupled plasma atomic emission spectrometer/shielding system was specially designed and built for the analysis of radioactive materials. Both of an inductively coupled plasma source and a sample transfer system to be contacted with radioactive materials was installed in a stainless steel glove box. In terms of analytical capability and radiation safety, characteristic feature of the system was investigated. Its applicability to the determination of fission products and corrosion products in the radioactive materials such as spent fuel dissolver solution and the primary coolant of nuclear power reactors was evaluated. In the concentration range $0.01-0.1mgL^{-1}$, the relative standard deviation was found to be less than 5%.

  • PDF