• Title/Summary/Keyword: Fission Product

Search Result 136, Processing Time 0.024 seconds

Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant (원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가)

  • Song, Dong Soo;Ha, Sang Jun;Seong, Je Joong;Jeon, Hwang Yong;Huh, Seong Cheol
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.186-190
    • /
    • 2014
  • Nuclear Power Plants require the control ability of chemical condition (pH) because pH control during transient accident such as LOCA makes an able the fission product removal capability to be maintained, stress corrosion cracking of stainless steel equipment to be prevented and the production of hydrogen by aluminum and zinc to be minimized. An NPP is designed to control the pH of containment spray and sump coolant using the spray additives 30% NaOH in the event of loss of coolant accident. In this paper, the pH of sump coolant of an NPP during LOCA was analyzed and the fission products removal constant and decontamination factor were calculated according to Standard Review Plan 6.5.2 related to spray chemical conditions of pH. The calculated pH value of recirculation mode using the computer code corresponds to 8.09~9.67, which meets the chemical environment regulation requirements. The fission product removal capability caused by containment spray system is performed to provide input to radiation analysis.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

Neutronic optimization of thorium-based fuel configurations for minimizing slightly used nuclear fuel and radiotoxicity in small modular reactors

  • Nur Anis Zulaikha Kamarudin;Aznan Fazli Ismail;Mohamad Hairie Rabir;Khoo Kok Siong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2641-2649
    • /
    • 2024
  • Effective management of slightly used nuclear fuel (SUNF) is crucial for both technical and public acceptance reasons. SUNF management, radiotoxicity risk, and associated financial investment and technological capabilities are major concerns in nuclear power production. Reducing the volume of SUNF can simplify its management, and one possible solution is utilizing small modular reactors (SMR) and advanced fuel designs like those with thorium. This research focuses on studying the neutronic performance and radionuclide inventory of three different thorium fuel configurations. The mass of fissile material in thorium-based fuel significantly impacts Kinf, burn-up, and neutron energy spectrum. Compared to uranium, thorium as a fuel produces far fewer transuranic elements and less long-lived fission products (LLFPs) at the end of the core cycle (EOC). However, certain fission product elements produced from thorium-based fuel exhibit higher radioactivity at the beginning of the core cycle (BOC). Physical separation of thorium and uranium in the fuel block, like seed-and-blanket units (SBU) and duplex fuel designs, generate less radioactive waste with lower radioactivity and longer cycle lengths than homogeneous or mixed thorium-uranium fuel. Furthermore, the SBU and duplex feel designs exhibit comparable neutron spectra, leading to negligible differences in SUNF production between the two.

Fission-product Burnup Chain Model for Research Reactor Application (연구로용 핵분열 생성물 연소 체인 모델)

  • Kim, Jung-Do;Gil, Choong-Sup;Lee, Jong-Tai
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.351-358
    • /
    • 1990
  • A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the pseudo-element and the pseudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.

  • PDF

Post Test Analysis of the Phebus FPT1 Experiment

  • Cho, Song-Won;Park, Jong-Hwa;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.88-103
    • /
    • 1999
  • The purposes of this study are to understand the severe accident phenomena, to establish the simulation method for the experimental test, and to assess the current models in MELCOR for future improvement. This paper presents the results of the PHEBUS FPT1 post test analysis using MELCOR computer code, version 1.8.4. The entire PHEBUS facility has been modeled; the core, the primary circuit including the steam generator, and the containment vessel. Both the thermal hydraulic and the fission product behavior have been investigated. The code simulation results of the thermal hydraulic behavior show good agreement with the experimental data, The fission product release and transport are calculated using the CORSOR models in MELCOR code and the results will be compared with the experiment when the experimental data are available.

  • PDF

FISSION PRODUCT RELEASE ASSESSMENT FOR END FITTING FAILURE IN CANDU REACTOR LOADED WITH CANFLEX-NU FUEL BUNDLES

  • Oh, Dirk-Joo;Jeong, Chang-Joon;Lee, Kang-Moon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.651-656
    • /
    • 1997
  • Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been peformed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of the total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle.

  • PDF

Development of a Scaling Factor Prediction Method for Radioactive Composition in Low-level Radioactive Waste

  • Park, Jin-Beak;Lee, Kun-Jai
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.833-838
    • /
    • 1995
  • This study presents a method to predict plant-specific and operational history dependent scaling factors. Realistic and detailed approaches are taken to find scaling factors at reactor coolant. This approach begins with fission product release mechanisms and fundamental release properties of fuel-source nuclide such as fission product and transuranic nuclide. Scaling factors at various waste streams are derived from the predicted reactor coolant scaling factors with the use of radionuclide retention and build up model. This model makes use of radioactive material balance within the radioactive waste processing systems. According to input parameters of plant operation history, scaling factors predicted at reactor coolant and waste streams are well brought out the effects of plant operation history.

  • PDF

SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

  • Hartmann, Wolfgang;Jung, Jong Yeob
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.581-588
    • /
    • 2013
  • This paper deals with the Safety Analysis for $CANDU^{(R)}$ 6 nuclear reactors as affected by main Heat Transport System (HTS) aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermal-hydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR) analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermal-hydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY) aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermal-hydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.