• 제목/요약/키워드: Fissile Utilization

검색결과 4건 처리시간 0.025초

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

PWR-PHWR 핵연료 주기의 핵적 특성 (Nuclear Characteristics of a New(PWR-PHWR) Fuel Cycle)

  • Jae Woong Song;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.185-192
    • /
    • 1985
  • 가압경수로에서 나오는 사용후 핵연료의 fissile 양은 CANDU형 원자로에 쓰는 천연우라늄의 농축도 보다 높다. 따라서 핵연료 활용을 다양화하고 점차 누적되고 있는 가압경수로의 사용후 핵 연료의 저장문제를 부분적으로나마 해결하기 위하여, 가압경수로의 사용후 책 연료를 CANDU 형 원자로에 사용하는 방안을 검토 하였다. 가압경수로에서 나온 사용후 핵 연료에서 가공되는 혼합핵연료(Mixed Oxide Fuel)를 CANDU형 원자로에 장전하였을 경우, WIMS/D 코드를 이용하여 핵적특성을 분석하였다. 그리고 본 분석에서는 현 CANDU형 원자로의 반응도 조절장치를 변경시키지 않고 혼합핵 연료를 CANDU형 원자로에 사용할 수있는 방안만 조사하였다.

  • PDF

A SENSITIVITY STUDY ON NEUTRONIC PROPERTIES OF DUPIC FUEL

  • Park, Hangbok;Roh, Gyu-Hog
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.124-129
    • /
    • 1998
  • A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The $^{239}$ Pu and $^{235}$ U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the fled uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%.. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel has shown that it is desirable to increase the $^{239}$ Pu and $^{235}$ U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, il is recommended to have enrichments of 0.45 and 1.00 wt% for $^{239}$ Pu and $^{235}$ U, respectively.

  • PDF