• 제목/요약/키워드: Fisheries production

검색결과 1,976건 처리시간 0.032초

원자력발전소의 온배수 배출량을 고려한 어업생산감소율 추정 모델 (A Quantitative Model for Estimating Fishery Production Damages as a Result of Thermal Effluents from Nuclear Power Plants)

  • 장창익;이성일;이종희
    • 한국수산과학회지
    • /
    • 제42권5호
    • /
    • pp.494-502
    • /
    • 2009
  • A quantitative model was developed in order to estimate fishery production damage due to anthropogenically induced environmental changes. The model is described in the following equation, $Y_D=\frac{{\phi}_D}{{\phi}_G}[Y_0{\cdot}(t_p-t_0)-\frac{Y_0}{{\phi}_G}(1-e^{-{\phi}_G(t_p-t_0)})]$, where, $Y_D$ is annual amount of fishery production by nuclear power plant. ${\varphi}$ D and ${\varphi}$ G are instantaneous decreasing coefficient of fishery production by nuclear power plant and instantaneous decreasing coefficient of gross fishery production, respectively. $Y_0$ is annual mean fishery production without damages. $t_p$ is the present time, and $t_0$ is the starting time of damages. The model was applied to fishing grounds near a nuclear power plant on the east coast of Korea. Since fishery production damages have become bigger with increasing emission of thermal effluents from generators activities in the power plant, this factor has also been considered as, $\delta_{D_i}=\delta_D\({\sum}\limits_{i=0}^{n}\;W_i/W_T\)$, where, $\delta_{Di}$ is the cumulative damage rate in fishery production from generators, $\delta_D$ is the total cumulative damage rate in fishery production, $W_i$ is the emission amount of thermal effluents by generator i, and n is the number of generators in the nuclear power plant. This model can be used to conduct initial estimates of fishery production damages, before more detailed assessments are undertaken.

넙치(Paralichthys olivaceus) 양식산업의 가치사슬 분석 (Value Chain Analysis of the Olive Flounder Paralichthys olivaceus Aquaculture Industry)

  • 김남리;김혜성;김도훈;이남수;김신권;민병화
    • 한국수산과학회지
    • /
    • 제56권6호
    • /
    • pp.930-935
    • /
    • 2023
  • This study aimed to analyze the structure of the value chain of the olive flounder aquaculture industry to increase the value of this industry. Based on the value chain theory, olive flounder aquaculture industry activities were classified as primary and support activities. The primary activities included seed production, fish production, producer distribution, consumer distribution, and consumption. The support activities were production infrastructure, organization and specialization, R&D, and government policy. A survey was conducted on the costs of seed and fish production in the primary activities to investigate the business structure, and the distribution structure was analyzed to examine distribution costs and margins. In the support activities, the recent trends in R&D and government policy were mainly examined, based on which, a measure to reduce costs and maximize profits was suggested. It is necessary to reduce costs across the production processes by improving seed quality and reducing labor, feed, and management costs, which are strongly associated with support activities. Therefore, lowering costs will be possible in the olive flounder aquaculture industry when R&D outcomes, such as species development, feed quality improvement, and aquaculture system development, are stably diffused and applied in tandem with government policy regarding the industry.

낙동강 하구 해양환경 및 기상 요인이 김P(orphyra yezoensis) 생산량 변화에 미치는 영향 (Effects of Meteorological and Oceanographic Properties on Variability of Laver Production at Nakdong River Estuary, South Coast of Korea)

  • 권정노;심정희;이상용;조진대
    • 한국수산과학회지
    • /
    • 제46권6호
    • /
    • pp.868-877
    • /
    • 2013
  • To understand the effects of marine environmental and meteorological parameters on laver Porphyra yezoensis production at Nakdong River Estuary, we analyzed marine environmental (water temperature, salinity, nutrients, etc.) and meteorological properties (air temperature, wind speed, precipitation, sunshine hours) with yearly and monthly variations in laver production over 10 years (2003-2013). Air and water temperature, wind speed, sunshine hours and precipitation were major factors affecting yearly variability in laver production at the Nakdong River Estuary. Lower air and water temperatures together with higher levels of nutrients and sunshine and stronger wind speeds resulted in higher laver harvests. Salinity and nitrogen did not show clear correlations with laver production, mainly due to the plentiful supply of nitrogen from river discharge and the low frequency of environmental measurements, which resulted in low statistical confidence. However, environmental factors affecting monthly laver production were related to the life cycle (culturing stage) of Porphyra yezoensis and were somewhat different from factors affecting annual laver production. In November, a young laver needs lower water temperatures for rapid growth, while a mature laver needs much stronger winds and more sunshine, as well as lower temperatures for massive production and effective photosynthesis, mostly in December and January. However, in spring (March), more stable environments with fewer fluctuations in air temperature are needed to sustain the production of newly deployed culture-nets ($2^{nd}$ time culture). These results indicate that rapid changes in weather and marine environments caused by global climate change will negatively affect laver production and, thus, to sustain the yield of and predict future variability in laver production at the Nakdong River estuary, environmental variation around laver culturing farms needs to be monitored with high resolution in space and time.

부산연안 미역(Undaria pinnatifida)양식 생산 예측을 위한 장기 해양자료 분석 (Analysis of Long-term Oceanic Data for the Prediction of Undaria pinnatifida Aquaculture Production off the Coast of Busan)

  • 한인성;서영상;이준수
    • 한국수산과학회지
    • /
    • 제46권6호
    • /
    • pp.941-947
    • /
    • 2013
  • To understand the relationship between various oceanographic factors and seaweed production, we examined the annual accumulated aquaculture production of Undaria pinnatifida with respect to water temperature, salinity, dissolved oxygen, current patterns and nutrients over 21 years (1990-2010) (this date range does not add up to over 21 years) along the coast of Busan, Korea. According to the results of the cross-correlation function, annual production of U. pinnatifida was closely related to the following conditions: low water temperature, low salinity, strong Tsushima Warm Current, and high concentrations of dissolved oxygen and nutrients. In this study, we also considered the Index of Oceanographic factors for U. pinnatifida (IOU) by computation of a simple equation. This index will be used for the prediction of U. pinnatifida aquaculture production off the coast of Busan.

해양생산분야의 요구기술 수요조사 및 전문가의 의견을 반영한 단·중기 기술 로드맵 작성 연구 (Investigation of Demand Technology and Construction of Technology Roadmap for Short and Middle-term Research and Development with Focus on the Consensus Link Between Fisheries Specialists and Managers in Marine Production Field)

  • 이대재
    • 수산해양교육연구
    • /
    • 제17권2호
    • /
    • pp.193-208
    • /
    • 2005
  • The object of this study is to provide a framework of increasing the effectiveness of the R&D planning of experts in fisheries and the education of students with the theoretical background and analytical skills through the adoption of technology roadmapping process in the marine production industry. The study was conducted by fact-finding surveys and the response content for surveys obtained from each expert advisor in the field of fisheries and maritime affairs such as fishery industries, some government organizations and research institutes including the Ministry of Maritime Affairs and Fisheries (MOMAF), National Fisheries Research and Development Institute (NFRDI) and fisheries-related universities was analyzed. The major implementation tasks to effectively achieve the basic goals of technology roadmap for short and middle-term research and development in the fisheries production field are as follows: 1. Research in order to achieve the realization of community-based resource management fisheries or fishermen-oriented co-management fisheries with paradigm shift in fisheries management. 2. Research in order to derive the construction of cost reducing and manpower saving systems in fishery-related science, technology and engineering. 3. Research in order to create the high value-added fisheries products with a focus on the upgrading of processing, freezing and refrigerating facilities, the reduction of logistics costs and the minimization of distribution steps. 4. Research in order to achieve the realization and development of environmental-friendly fisheries and internationally competitive fisheries through restructuring the entire fishing industries, in particular, small-scale fisheries. 5. Research in order to achieve the effective utilization of fisheries resources with a new creation of clean and living marine environment by fisherman under the balanced management and protection of marine living resources and fishing grounds.

자유판매제 전면 실시에 따른 문제점과 보완대책;-산지 어시장제도를 중심으로 - (Problems and complementary Measures from the Overall Enforcement of Free Market System;- Fish Markets in the Production -)

  • 김승
    • 수산경영론집
    • /
    • 제26권1호
    • /
    • pp.9-27
    • /
    • 1995
  • From now on, the direction of fishery products circulation measure should be improved the system to give just the right of free choice of sale route like retail, direct sale, direct dealings and direct shipping only for fishermen to produce them diversifing the function and the role of current fish market in the production to prepare the fishery internationalization, to improve the competitiveness of coastal and off-shore fishery. Practically wholesale market in land and fish market in the production have the different function and role, the organization of wholesale market in land can't substitute the essential function and role which fish market in the production should perform. So far, fisheries cooperatives as a managing subject of fish market in the production have depended on the consignment sales and purchases of fishery products but, from now on, it should be explore the widespread supply way of fishery products by producing value - added fishery products that should bring higher demand from the consumers, producer - consumer direct marketing system through not only consignment sales but also direct sales that common processing and manufacturing system of fishery products under the management of FC has been established. The direction of the idealest structural improvement of fishery production circulation organization is to establish the the position of the fishery retail price leader based on the standard of market in the fisheries production due to existing characteristics of fisheries, accordingly, to harmony the market organization of direct transportation, direct sales and direct dealings form by producer and group of producers with market organization in the fisheries production, and to make the condition to do the appropriate distributive function.

  • PDF

Effect of Growth Hormone on Vitellogenin Production by Estradiol-17$\beta$ in the Culture of Hepatocytes in the Rainbow Trout Oncorhynchus mykiss

  • Yeo In-Kyu;Mugiya Yasuo
    • Fisheries and Aquatic Sciences
    • /
    • 제1권1호
    • /
    • pp.19-23
    • /
    • 1998
  • Effects of pituitary and thyroid hormones on estradiol-induced vitellogenin (VTG) induction were electrophoretically examined in primary hepatocyte cultures of rainbow trout. Hepatocytes were precultured for 2 days and then estradiol-17 $\beta$ $(E_2,\;2 \times 10^{-6}M)$>, triiodothyronine $(T_3,\;10^{-8}-10^{-6}M)$, bovine growth hormone (bGH, 10-100 ng/ml), ovine prolactin (oPRL, 100-500 ng/ml), and pituitary extract (PE) of rainbow trout (0.75PE/dish) were added to the incubation medium. The hepatocytes were cultured for 7 more days. The addition of oPRL to the incubation medium was not effective in increasing VTG production at any concentrations. The addition of PE to the incubation medium with $E_2$ was not effective in increasing VTG production. The addition of bGH to the incubation medium with $E_2$ was not effective in increasing the rate of VTG production at concentrations of 10-50 ng/ml. However, a higher concentration of bGH, 100 ng/ml, increased VTG production. The various concentrations of $T_3$ were ineffective in stimulating VTG production. These results suggest that GH could be one of stimulus factors for VTG production in rainbow trout.

  • PDF

한ㆍ중 수산업의 경쟁력 비교 분석 (A Comparative Study on the Competitive Power in Fisheries of Korea and China)

  • 박영병
    • 수산경영론집
    • /
    • 제26권2호
    • /
    • pp.53-74
    • /
    • 1995
  • The purpose of this paper is to compare China's and Korea's marine fisheries industries in order to present the main features of China's marine fisheries and show the comparative advantages they have in production. The results indicate that China's marine fisheries have the following features. (1) The marine proportion of the fisheries industry economic activity is less than 60%. Fishing is 71.3% of that marine activity. (2) The production trends of marine fisheries history in China can be classified as follows: 1) an early growth period, 2) a deliberation/consolidation period, 3) a second growth period, 4) a third growth period, and 5) a fourth growth period. The growth rate has rapidly increased recently. (3) Fish production is over 70% of marine fishing fisheries, the next major product is crustacea. The production of shellfish occupies over 70% of marine aquaculture, seaweed production however, is only 22% of total marine aquaculture. (4) The licensed area for marine aquaculture in China is 586.3 ha and that area is 5.4 times larger than that of Korea. The allotted area for shellfish aquaculture is 60% of marine aquaculture, production areas of crustaceans occupy 27.3%, fish has 7 1%, and seaweed production only 5.7% of allocated marine aquaculture areas. (5) The proportion of power vessels for marine fisheries of China's total power vessel fleet is around 65%, and the marine fisheries portion of non - powered vessels constitutes only 12%. The highest proportion of power vessels engaged in marine fisheries activities is between 10 tonnes to 100 tonnes. (6) The portion of marine fishery workers of all fishery industry employees is 22%, and 70% of them are full - time workers. Of marine fishery workers, 64% are in the fishing sector, 22%, aquaculture workers, and the number of employees in marine fisheries is increasing every year. The analysis of China's fishery industry in the production competitiveness indicates as follows : (1) The licensed areas in marine aquaculture, number of fishing vessels, number of marine fishing workers in China's fishery industry are much more than those of Korea's. Therefore China is much more competitive than Korea in the quantity of production side. However, licensed areas for seaweed aquaculture are more extensive in Korea than China. In China, the number of power vessels of between 10 tonnes and 100 tonnes, the licensed shellfish aquaculture areas, and the number of fishing workers within the fisheries industry are much more than those of Korea. (2) It is estimated that the licensed areas in marine aquaculture, number of medium sized power vessels, number of marine fishery workers will be increased as the quantity of production factors grow in China. (3) At present, yield per Ha. in marine cultures is very low in China. Therefore it is estimated that aquaculture techniques have only been diffused recently in China. Yield of fish per Ha especially is much lower than that of Korea. So the level of aquaculture techniques seems much lower than that of Korea. (4) China is behind Korea in production technique, however the number of HP per boat in China is lower than that of Korea. Therefore, China is much more competitive than Korea in Costs. (5) Average fish catches per marine fishery worker in China is only 1/3 that of Korea's, and average marine aquaculture production in China is only 1/2 that of Korea. Therefore we can say Korea is more competitive than China in efficiency. The average income of marine fishery workers in China is higher that that of other Chinese industries. However, the competitiveness of the fisheries industry in China will be increased as more capital is invested and advanced techniques are developed.

  • PDF

자율관리 마을어업의 생태계 기반 자원관리시스템 연구 (A study on the ecosystem-based resource management system of self-regulatory community fisheries)

  • 박희원;장창익
    • 수산해양기술연구
    • /
    • 제44권4호
    • /
    • pp.345-352
    • /
    • 2008
  • A self-regulatory community fisheries management program in Korea is designed to enhance fisheries resources, to protect fishing grounds of self-regulatory communities, and to manage their fisheries resources by their own regulations and knowledge. This study explored an applicable ecosystem-based management plan based on the scientific investigation and analysis. This study suggested objectives, indicators and reference points of the ecosystem-based resource management system which are applicable to selfregulatory community fisheries. The objectives of the management system are to maintain sustainable fisheries production, to maintain optimum fishing intensity, to reduce by-catch, to conserve spawning ground and habitat, to maintain optimum habitat environment, to increase/maintain abundance of prey species, to increase/maintain stock biomass, and to conduct stock enhancement on the basis of scientific assessment. The improved methods for the assessment and management are introduced by demonstrating a self-regulatory fishery which targets on hen clam in Dong-li fishing village in Busan.

공간패널모형을 이용한 연안어업 생산량과 기후변화 요소의 관계에 대한 연구 (A Study on the Relationship Between the Catch of Coastal Fisheries and Climate Change Elements using Spatial Panel Model)

  • 김봉태;엄기혁;이준수;박혜진;육근형
    • 수산경영론집
    • /
    • 제46권3호
    • /
    • pp.63-72
    • /
    • 2015
  • This study aims to empirically analyze the relationship between climate change elements and catch amount of coastal fisheries, which is predicted to be vulnerable to climate change since its business scale is too small and fishing ground is limited. Using panel data from 1974 to 2013 by region, we tested the relationship between the sea temperature, salinity and the coastal fisheries production. A spatial panel model was applied in order to reflect the spatial dependence of the ocean. The results indicated that while the upper(0-20m) sea temperature and salinity have no significant influence on the coastal fisheries production, the lower(30-50m) sea temperature has significant positive effects on it and, by extension, on the neighboring areas's production. Therefore, with sea temperature forecast data derived from climate change scenarios, it is expected that these results can be used to assess the future vulnerability to the climate change.