• Title/Summary/Keyword: Fish disease microorganisms

Search Result 5, Processing Time 0.02 seconds

The utilization of antibiotics and the treatment of bacterial diseases in fish (항생제 사용과 세균성 어류질병의 치료)

  • Jeong, Hyun-Do;Chun, Seh-Kyu
    • Journal of fish pathology
    • /
    • v.5 no.1
    • /
    • pp.37-48
    • /
    • 1992
  • Antibiotics are chemical substances produced by various species of microorganisms that suppress the growth of other microorganisms or may destroy them. Among the more than 4000 antibiotics that has been identified, about 20s are using as the therapy of infectious fish diseases. There are several methods used to classify and group antibiotics, and the most common classification has been based on chemical structure and proposed mechanism of action. The effect of antibiotics may be determined by the kind of fish pathogens and by the external environment surrounded the infected fish. It implies that the kind of antibiotics and its application method should be decided after the determination of the reasons of fish disease. The uncontrolled usages of antibiotics may induce the selection of resistant mutants appeared spontaneously and present in any group of bacteria. The epidemic spread of such antibiotic resistant strains of fish pathogenic bacteria already has been reported in various districts of japan. Importantly, transferable drug resistant(R) plasmids were detected in strains of most of fish pathogens. Based on those reports, the antimicrobial resistance appears to be a rapidly emerging problem in the fish industry on the country. The expanding literatures on the pharmacokinetics, clinical trials, withdrawal periods and efficacy of environmental effect for the commonly using antibiotics have met the needs of data for the practical application of antibiotics. However, the most important thing for the treatment of fish diseases would be the communication and exchanging of information between the site of aquaculture and the diagnostic laboratory.

  • PDF

Investigation of Reportable Communicable Diseases and Parasites in Aquatic Organisms Living in the Estuary of the Han River (한강 하구에 서식하는 수산생물의 법정전염병 및 기생충 감염 조사)

  • Kim, Jin Hui;Song, Jun Young;Lee, Jung-Ho;Hur, Jun Wook;Kwon, Se Ryun;Kwon, Joon Yeong
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.306-315
    • /
    • 2019
  • The estuary of the Han River constantly suffers from pollutants and pathogenic microorganisms which could cause serious damage to aquatic organisms living there. Despite of this potential risk, it is hard to find any reliable scientific reports on the status of reportable disease infection to the organisms living in this area. In this study, cyprinid fish and crustaceans in Jeonryu-ri, a region of the Han River estuary, were investigated for the infection by representative reportable communicable diseases(SVC, spring viraemia of carp; KHVD, koi herpesvirus disease; EUS, epizootic ulcerative syndrome; WSD, white spot disease) and parasites. Peripheral fish and primary freshwater fish were observed in Jeonryu-ri with cyprinid caught most frequently. Crustaceans were mostly marine species. No positive bands to any of the reportable diseases were produced in any of the fish and crustacean examined in this study by PCR. No trace of Clonorchis sinensis, a liver fluke potential threat to human health, was detected in any of fish samples. However, many fish were infected by metacecaria of other flukes, and other various parasites such as nematode, cestode, copepod, monosite and acanthocephalan. These results suggest that important aquatic organisms in the Han River estuary is not seriously polluted yet. However, it is important to keep monitoring the diseases since the water quality in this region is constantly changing, and devastating influence of infectious diseases is unpredictable. Further, it is required to expand monitoring area toward upstream and increase the number of fish for examination.

Antibacterial Effect of fish Diet Soaked in Salvia miltiorriza Extract (단삼 추출물의 어류 질병 세균에 대한 항균 작용 및 사료 적용 시험)

  • 목종수;송기철;최낙중
    • Journal of Aquaculture
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2001
  • The antibacterial effect of fish diet soaked in the extract of Salvia miltiorriza was tested to determine its levels of antibacterial activity, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The extract showed strong activity against gram positive bacteria, but was weak against gram negative bacteria. Concentration levels of 13.4~40.3 and 67.2~403.0 $\mu\textrm{g}$/ml were determined as the MIC and MBC, respectively. However, levels above 403.0 $\mu\textrm{g}$/ml was neither bacteriostatic nor bactericidal against Edwardsiella tarta, a gram negative strain. The fish diet, soaked in the extract of Salvia miltiorriza, inhibited the growth of all strains of Streptococcus genus and Vibrio anguillarum. The relationship formula between weight of fish diet and Salvia miltiorriza extract absorbed into the fish diet was Y=2.4953X+3.3276 ($R^2$= 0.9999). The antibacterial activity of the fish diet, soaked in the extract, was stable from 10 to 35$^{\circ}C$ during the storage period of 28 days.

  • PDF

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation

  • Pham, Hai The;Tran, Hien Thi;Vu, Linh Thuy;Dang, Hien The;Nguyen, Thuy Thu Thi;Dang, Thu Ha Thi;Nguyen, Mai Thanh Thi;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1104-1116
    • /
    • 2019
  • In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of $2.3mA/m^2$ anode surface and an average power density of $0.05mW/m^2$ anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.

Dietary effect of Bacillus subtilis MD-02 on Innate Immune Response and Disease Resistance in Olive Flounder, Paralichthys olivaceus (넙치(Paralichthys olivaceus)의 비특이적 면역반응 및 병 저항성에 대한 Bacillus subtilis MD-02의 효과)

  • Kim, Dong-Hwi;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.132-138
    • /
    • 2019
  • Among several marine-derived microorganisms isolated from the coast of Jeju Island that had antimicrobial activity against fish disease pathogens, Bacillus subtilis MD-02 was tested for its dietary effect on the innate immune response and disease resistance of olive flounder. Strain MD-02 was fed to the olive flounder at a concentration of $1.2{\times}10^4$, $1.2{\times}10^6$, or $1.2{\times}10^8CFU/100g$, respectively. Consequently, the hematocrit was higher in these three groups than that in the control group at 4 weeks, and the aspartate aminotransferase and alanine aminotransferase levels were decreased in the $1.2{\times}10^8$ and $1.2{\times}10^4CFU/100$ groups compared with the control group levels. The amylase activity and total protein were significantly increased in the $1.2{\times}10^4CFU/100g$ group at 3 weeks. The innate immune response, determined from the lysozyme and macrophage activities, was higher in the $1.2{\times}10^8CFU/100g$ group than in the control group. In addition, treatment of the olive flounders with Streptococcus parauberis at $1.2{\times}10^6CFU/ml$ confirmed the mortality rate, which was 100% in the control group and 40-60% in the groups fed B. subtilis MD-02, indicating that the fish had resistance to fish disease pathogens. Therefore, it was confirmed that when fed MD-02, olive flounder builds an innate immune response and acquires resistance to fish disease pathogens, indicating that B. subtilis MD-02 can be developed as a beneficial feed additive.