• Title/Summary/Keyword: Fish Movements

Search Result 48, Processing Time 0.026 seconds

Generating Complex Klinokinetic Movements of 2-D Migration Circuits Using Chaotic Model of Fish Behavior

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.159-169
    • /
    • 2007
  • The complex 2-dimensional movements of fish during an annual migration circuit were generated and simulated by a chaotic model of fish movement, which was expanded from a small-scale movement model. Fish migration was modeled as a neural network including stimuli, central decision-making, and output responses as variables. The input stimuli included physical stimuli (temperature, salinity, turbidity, flow), biotic factors (prey, predators, life cycle) and landmarks or navigational aids (sun, moon, weather), values of which were all normalized as ratios. By varying the amplitude and period coefficients of the klinokinesis index using chaotic equations, model results (i.e., spatial orientation patterns of migration through time) were represented as fish feeding, spawning, overwintering, and sheltering. Simulations using this model generated 2-dimesional annual movements of sea bream migration in the southern and western seas of the Korean Peninsula. This model of object-oriented and large-scale fish migration produced complicated and sensitive migratory movements by varying both the klinokinesis coefficients (e.g., the amplitude and period of the physiological month) and the angular variables within chaotic equations.

Fractal Analyses of Simulated Fish School Movements and Video-Recorded Sardine Movements

  • Kim, Soo-Hyun;Seiji, Ishikawa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.6-105
    • /
    • 2001
  • Fish schools behave like a single organism and offer a considerable survival advantage. In our simulations, the fish school is well organized and behaves like a single creature depending solely on the interactions among individuals without having any director fish. This kind of system can be said as the typical one of "Complex Systems". We make clear the validity of fractal analyses to evaluate fish school movements through evaluation of both the simulated movements and the real sardine movements taken by video tape. The analyses showed that we need two kinds of fractal dimensions (D$_1$, D$_2$) to fit to the observations; the one(D$_1$) corresponds to smaller coarsening levels and D$_2$ does to larger coarsening levels. The double linear analyses in ...

  • PDF

Ultrasonic Tracking of Movements of Striped Jack ( Caranx Delicatissimus ) in the Nunoura Bay , Japan (초음파 표지를 이용한 양식어의 유영행동 추적)

  • 신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.347-359
    • /
    • 1992
  • The movements of three striped jack (Caranx delicatissimus, 24cm of body length) were tracked by ultrasonic telemetry in the Nunoura Bay in August 1990. A school of the striped jack has been released near by the fish farming rafts by Goto branch of the Fisheries Agency and Japan Sea-Farming Association. To investigate the staying area and the swimming pattern of the fish, small size pinger($\Phi$8.5$\times$L35mm, 140dB re 1$\mu$Pa at 1m, 69kHz) was tagged on the dorsal fin without any anesthesia. The movements of three tagged fish are monitored at the same time with four omni-directional hydrophones. The locations of the fish are calculated by the hyperbolic method and tracked by a technique so called time division scheme which uses both the pulse interval and the phase. Three pingers used have the pulse interval of 1.7, 1.8 and 1.9sec, respectively, and the common pulse duration of 15ms. In results it was capable to estimate behavior right after the release, swimming speeds and approximate moving area of the fish. The movements were tracked for a week continuously, and it was found out that the staying area of the fish was around or under the farming rafts. Sometimes they swam together but most of the time they move separately. The average swimming speed of those fish was about two times of the body length.

  • PDF

Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed (영산강수계의 죽산보에 설치된 어도에서 어류의 이동성 평가)

  • Park, Chan-Seo;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1513-1522
    • /
    • 2014
  • Fish passage asssessments were conducted in the fishway at Juksan Weir, which was constructed as a four-major rivers project in the downstream area of Youngsan-River Watershed. For the research, fish-movements/migrations were analyzed for seven times from April ~ October, 2013 using an approach of fish trap-setting. Fish fauna and compositions were analyzed in the fishway, and seasonal- and diel-movement patterns were analyzed in relation to current velocity in the fishway. Also, abundances of exotic fishes such as bluegill sunfish (Lepomis macrochirus), large-mouth bass (Micropterus salmoides), and white curcian carp (Carassius cuvieri) were monitored in the fishway. Current velocity(n = 18) in the fishway showed large variations ($0.82{\pm}0.63m/s$) depending on the location of the fish trap-setting and this physical factor influenced the fish movements. Fish movements, based on the CPUE of individuals, in the fishway was greater in slower velocity (mean: 0.36 m/s, range: 0.10~1.54 m/s) than faster velocity (mean: 1.51 m/s, range: 0.90~1.90 m/s). Seasonal analysis of fish movements showed that most frequent uses (8 speices and 591 individuals, 66.2% of the total) of the fishway occurred in spring period(i.e., June). Diel movement analysis, in the mean time, showed highest in the time period of 00:00 ~ 3:00 am (7 species and 281 individuals, 20.9% of the total). The efficient managements in the fishway at Juksan Weir are required in relation to the hydrological regime.

Simulation and Three-dimensional Animation of Skipjack Behavior as Capture Process during Purse Seining

  • Kim, Yong-Hae;Park, Myeong-Chul;Ha, Suk-Wun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • We modeled fish school movements as a capture process in relation to the purse seine method using the three steps of the stimulus-response process (i.e., input stimuli, central decision-making and output reaction). Input stimuli of the model were categorized as either physical stimuli such as visual stimulus, sound stimulus, water flow, and weather or as biological stimuli such as species and size, swimming performance, sensual sensitivity, and presence of prey or predators. The output process determining the spatial orientation of the fish school for 3-D movements was based on swimming speed and angular change in the fish response, and these movements were animated as the relative geometry between the fish school and the purse seine. Simulations were carried out for skipjack tuna (Katsuwonus pelamis) schools reacting to a pelagic purse seine in the southwest Pacific Ocean. Simulation results showed that escape ratios varied from 20 to 70% by the relevant ranges in the stimulus-response thresholds, swimming speeds, and angular changes of fish schools were similar to those observed in the field. Therefore, with knowledge of relevant parameters, this model can be used to predict capture and escape probabilities of purse seine operations for different fish species or conditions.

Fish Passage Evaluations in the Fishway Constructed on Seungchon Weir (승촌보에 설치된 어도에서 어류의 이동성 평가)

  • Choi, Ji-Woong;Park, Chan-Seo;Lim, Byung Jin;Park, Jong-Hwan;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.215-223
    • /
    • 2013
  • The objective of this study was to evaluate fish passage efficiency, based on fish-trap monitoring methodology, in the fishway of Seungchon Weir, which was constructed on the lower region of Yeongsan River in 2011. Seasonal patterns and diel variations of fish movements, fish fauna, and compositions in the fishway were analyzed in relation to the current velocity and location of the trap-setting in the fishway. For the analysis, we conducted seven times surveys in 2012 on the fishway and also conducted intensive monitoring of the fishway as 3 hrs interval for the diel variations of fish fauna and compositions in the fishway. According to the fish-trap monitoring methodology, the total number of fish species was 13 species, which was a 43.3% of the total. Most dominant fish used the fishway was Squalidus chankaensis tsuchigae and the relative abundance of the species used the fishway was 33.5% of the total. The season and time zone (in diel variation) observed most frequently in the fishway were July and 18:00-21:00 PM, respectively. The fish movements and use-rates of fishway varied depending on the locations of trap-setting; Fish biomass and the number of species were statistically (p < 0.05) greater in the most right or left-sided traps than in the mid-traps. Also, fish movements and use-rates of fishway were influenced by current velocity on the fishway; fish in the fishway preferred the low current velocity (mean 0.71 m/sec) than the high current velocity (mean 1.13 m/sec). Further long-term studies should be monitored for the efficiency evaluations of the fishway.

Summer Patterns and Diel Variations of Fish Movements Using Fish Trap Sampling Technique in the Juksan Weir (죽산보의 어도에서 트랩 샘플링 기법을 이용한 하절기, 일주기별 어류 이동성 평가)

  • Han, Jeong-Ho;Ko, Dae-Geun;Lim, Byung Jin;Park, Jong-Hwan;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.879-891
    • /
    • 2012
  • The objective of this study was to evaluate seasonal patterns and diel variations of fish movements in the Juksan Weir which was constructed in 2010 at the down-stream of Yeongsan-River watershed. For this study, we monitored day-and-night movement(24 Hr cycle) and seasonal fish migration(June ~ August) patterns in 2011 along with species compositions and abundances depending on the locations of the traps within the fishway. Total number of species sampled was 14 and the total number of individuals was 1,263 with only the size-fractions(as total length) of the fish < 20 cm during the study. Seasonal analysis of fish movement in the fish way showed that highest frequency in the movement occurred in June - July, which is closely associated with a spawning peak season. The most dominant species using the fishway was Squalidus chankaensis tsuchigae, and this species turned out to be 26.9% of the total in the use rate of fishway. Daily monitoring of fish movements showed that most frequent movements occurred between 18:00 PM and 21:00 PM when the fish have a feeding time generally. The migratory fish were not found in the fishway during the study. Mean current velocity during the study $0.42{\pm}0.02ms^{-1}$(n = 42), and there were no significant statistical differences(p > 0.05) among the daily and monthly velocities in the fishway. The use rate of fish passage, in terms of fish species, was 48%, compared with total sampling of fish species(29 species) at the down-river regions during the same period, indicating a low use rate. Further continuous long-term monitoring should be conducted to evaluate the impacts of the weir construction in the river.

Expressing Techniques of Natural-Looking Fish Locomotion applied the Pendulum Concept (진자개념을 적용한 자연스러운 어류 움직임 표현 기법)

  • Yoo, Bong-Gil;Ryu, Nam-Hoon;Ban, Kyeong-Jin;Kim, Kyeong-Og;Oh, Kyeong-Sug;Lee, Hye-Mi;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2009
  • Thanks to the development of computer graphics, Animation can be easily accessed through movies or games. The users can meet various contents and are asking for high quality animations that resembles reality to a near perfection. The research is proceeded to observe the fish shapes and swimming movements through cyber aquariums, fish ecology museums and fish encyclopedias. The core of expressing undersea scenery is the natural and dynamic movements of the fish. In this thesis in order to achieve the natural shape of fish swimming, it is necessary to design a fish growth process system based on environmental factors and apply different standard points depending on the various swimming types of fish species to express the fish as near reality as possible. And by calculating the different swimming velocities of different standard points, a natural swimming shape will be achieved.

  • PDF

Acoustical Survey for Estimating Fish Biomass at Chilam Bay, Korea

  • Nduwayesu, Evarist;Hwang, Bo-Kyu;Lee, Dae-Jae;Shin, Hyeon-Ok
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • This acoustic experiment noted that fish species in Chilam-Gijang marine ranching area were more densely distributed in the pelagic zone during nighttime than daytime. In each season, the gill nets caught 15 different fish species and the estimated average target strengths were -44.0 dB and -44.4 dB for autumn and winter surveys, respectively. The estimated autumn fish biomass were 7.7 tons and 26.0 tons during daytime and nighttime, respectively. Winter biomass was 2.27 tons and 30.97 tons during daytime and nighttime, respectively. Different fish species form schools that exhibit different movements and behaviors, and thereby occupy varying water layers. These results explained the estimated fish biomass, and variation with seasons and time of the surveys around artificial reefs in Chilam Bay, Korea.

A review on fish bio-logging for biotelemetry applications

  • Jikang Park;Sung-Yong Oh
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.698-707
    • /
    • 2023
  • Fish are an essential resource in human society, and while ecological research on them is challenging, it is absolutely necessary. Recent technologies enabled researchers to monitor underwater fish behavior. Acoustic signals, satellite-mediated location estimation, and light-based geolocation are powerful tools for tracking fish movements from freshwater to deep-sea habitats. These tools allow us to track various fish species and elucidate their ecology. Furthermore, based on these technologies, we can develop fisheries management plans and enhance aquaculture productivity. In this review, we also discuss challenges in improving current technologies and provide future recommendations for fish bio-logging studies.