• Title/Summary/Keyword: First wall

Search Result 1,441, Processing Time 0.025 seconds

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

  • Kim, Taedong;Taewon Seo;Abdul.I. Barakat
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of the present study is to investigate fluid mechanical interactions between two major abdominal aortic branches under both steady and pulsatile flow conditions. Two model branching systems are considered: two branches emerging off the same side of the aorta (model 1) and two branches emerging off the opposite sides of the aorta (model 2). At higher Reynolds numbers, the velocity profiles within the branches in model 1 are M-shaped due to the strong skewness, while the loss of momentum in model 2 due to turning effects at the first branch leads to the absence of a reversed flow region at the entrance of the second branch. The wall shear stresses are considerably higher along the anterior wall of the abdominal aorta than along the posterior wall, opposite the celiac-superior mesenteric arteries. The wall shear stresses are higher in the immediate vicinity of the daughter branches. The peak wall shear stress in model 2 is considerably lower than that in the model 1. Although quantitative comparisons of our results with the physiological data have not been possible, our results provide useful information for the localization of early atherosclerotic lesions.

Pre-estimate on Structural Behavior and Cracks of Subway Wall Structures Using Gage Measurement (계측에 의한 지하철 박스구조물 벽체부의 균열 밑 구조거동 예측)

  • Kim, Young-Jin;Kim, Sang-Chel
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.657-663
    • /
    • 2006
  • By measuring concrete temperature and strains of concrete and reinforcing bars throughout gages embedded and also by observing the crack occurrence, this study aims at the characteristics of structural behavior of subway wall structure in associate with concrete ages. The length of 23.5m, thickness of 2.0m of real subway custody line was selected as a representative structure and 7 thermocouples and 6 strain gages were installed to measure the behavior of wall structure. The results were compared and verified with analytical results using MIDAS in order to show their usefulness. It was found that only attachment of strain gages on the surface of reinforcing bars can figure out the timing of crack occurrence and hydration heat program is useful to estimate comparatively exact magnitudes of temperature. Since estimated time of crack occurrence throughout thermal stress analysis depends on the period of transferred thermal stress from concrete to reinforcing bars, however, cracks from naked eyes were identified later than analytical results. Cracks were observed first at the center of wall line and then to the end of line symmetrically.

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Method for Determining Orthotropic Elastic Constants of Equivalent Shell Elements for the Boiler Membrane Wall of Coal-Fired Power Plants (석탄화력발전소 보일러의 멤브레인벽을 위한 등가 쉘요소의 직교이방성 탄성상수 결정 방법)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, we proposed a method to replace the solid finite element model of the boiler membrane wall for coal-fired power plants using an equivalent shell model. The application of a bending load to the membrane wall creates greater displacement at both ends of the central portion when compared with the middle when an isotropic elastic constant is used in the shell model. This is inconsistent with the results of the solid model where the central portion is uniformly deformed. Here, we presented a method to determine the orthotropic elastic constants of the shell model in terms of bending stiffness and vibration characteristics to solve this problem. Our analysis of the orthotropic shell model showed that the error ratio was 0.9% for the maximum displacement due to the bending load, 0.3% for the first natural frequency, and 2.5% for the second natural frequency when compared with the solid model. In conclusion, a complicated boiler membrane wall composed of a large number of pipes and fins can be replaced with a simple shell model that shows equivalent bending stiffness and vibration characteristics using our proposed method.

Eco-Moving Wall for a Preventing Floods using Glass Fiber Reinforced Composite (유리섬유복합소재를 이용한 지중매설형 승하강식 홍수방지 벽체구조물)

  • Yun, Youngman
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.462-468
    • /
    • 2013
  • Walls for preventing floods using overturning or buoyancy method have been developed as replacement construction for preventing floods in and outside country. However, as they have some problems with pre-inspection and maintenance control, Eco-moving wall structure for preventing floods was studied and first developed using Glass Fiber Reinforced Composite which has not only light weight but outstanding strength. The developed wall structure for preventing floods offering structural stability and field applicability through numerical analysis was confirmed to reduce construction expenses by around 87~95% and secure waterproof property with the inside of the wall installed rubber water stopper.

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

TURBULENCE MODULATION OF THE UPWARD TURBULENT BUBBLY FLOW IN VERTICAL DUCTS

  • ZHANG, HONGNA;YOKOMINE, TAKEHIKO;KUNUGI, TOMOAKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • The present paper aims at improving the modeling of turbulence for the upward turbulent bubbly flow through the use of experimental databases that contain data on small and large vertical ducts. First, the role of bubble-induced turbulence was analyzed, which indicated the dominant role of the bubble-induced turbulence in the duct center for relatively high void fraction cases. Therefore, the turbulence therein was mainly focused on, which indicated that the stronger turbulence could be induced by bubbles in large ducts with similar void fractions as compared to that in small ducts. Next, the turbulence of upward turbulent bubbly flow near the wall is discussed to understand the interaction between the wall-induced and bubble-induced turbulence. It showed that the existence of a wall could suppress the bubble-induced turbulence given the same void fraction, and the existence of bubbles could also suppress the solely wall-induced turbulence as compared to the single-phase turbulent flow, even though the total turbulence is enhanced. The above characteristics indicated that the current turbulence modeling method needs to be modified, especially when the bubble-induced turbulence plays a dominant role.

DYNAMIC CHARACTERISTICS OF ANCIENT MASONRY CASTLE WALLS

  • SungMinLee;SooGonLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.71-77
    • /
    • 2003
  • Generally the dynamic characteristics of stone wall structures depend on several factors such as contact, the type of interlocking bonding stones, and the filling materials. This paper describes a non-destructive technique for diagnosis of historic masonry stone structures using the measurement of natural frequency technique. For this purpose, the castle wall of Nag-An Folk Town located in Sunchon, Korea was selected as a model. The Nag-An Town Castle is one of the well maintained historical remains constructed in the Chosun Kingdom of Korea. The construction started in 1397 A.D and was finished in 1626 A.D. The non-mortar castle wall is 1470m long and the average height is 4m with a width of 3 4m. The exterior of the wall is bonded with 1 2 m rectangular rough-faced stone and the inside of the wall is filled with gravel. The traditional village still remains inside the Nag-An Town Castle, and they have a regional food festival every October. Transverse vibrations were measured at 8 points around the castle. The measured natural frequency of the first mode was 26Hz 41Hz, and the shear modulus of filling material was 2.142 x $10^3$ ~ 8.915 x $10^3$kgf/$cm^2$ . With these results, it may be assumed that the filling material is gravel or a sand-gravel mixture. It is expected that the information provided by this paper will be useful for addressing the maintenance problems of the old castle walls.

  • PDF

CHEMICAL COMPATIBILITY OF SOIL-BENTONITE CUT-OFF WALL FOR IN-SITU GEOENVIRONMENTAL CONTAINMENT

  • Inui, Toru;Takai, Atsushi;Katsumi, Takeshi;Kamon, Masashi;Araki, Susumu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.135-139
    • /
    • 2010
  • A construction technique to install the soil-bentonite (SB) cut-off wall for in-situ geoenvironmental containment by employing the trench cutting and re-mixing deep wall method is first presented in this paper. The laboratory test results on the hydraulic barrier performance of SB in relation to the chemical compatibility are then discussed. Hydraulic conductivity tests using flexible-wall permeameters as well as swell tests were conducted for SB specimens exposed to various types and concentrations of chemicals (calcium chloride, heavy fuel oil, ethanol, and/or seawater) in the permeant and/or in the pore water of original soil. For the SB specimens in which the pore water of original soil did not contain such chemicals and thus the sufficient bentonite hydration occurred, k values were not significantly increased even when permeated with the relatively aggressive chemical solutions such as 1.0 mol/L $CaCl_2$ or 50%-concentration ethanol solution. In contrast, the SB specimens containing $CaCl_2$ in the pore water had the higher k values. The excellent linear correlation between log k and swelling pressure implies that the swelling pressure can be a good indicator for the hydraulic barrier performance of the SB.

  • PDF

A Basic Study on the Development of Filling Material using Seismic Retrofit of Masonry Architectural Wall Systems in Educational Facilities. (교육시설물의 조적치장벽체 내진보강에 적용 가능한 충전재 개발 기초연구)

  • Lee, Joo-Hyeong;Oh, Jun-Seok;Jeon, Sang-Sub;Son, Ki-Young;Na, Young-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • South Korea has long been without major earthquakes. But 317 public facilities have been damaged by Po-Hang earthquake. Among them, 103 educational facilities suffered 25.6 billion won worth of damage. This is the most damaging of public facilities. The earthquake damage was mainly centered on non-seismic retrofit educational facilities and masonry architectural wall systems installed on the outer walls of buildings. Therefore, the purpose of this study is to develop a filling material that can be applied to the non-seismic retrofit of masonry architectural wall systems installed on the outer walls of educational facilities. To achieve the objective, first, set the filling material requirements. Second, set the sequence model of experiments and prepare for the experiment. Third, after the experiment, analyze the results obtained through the experiment. Forth, the optimal filling material is selected by comparing the analyzed results with the requirements. As a results, E-S-X sample using epoxy resin were selected for the seismic retrofit of masonry architectural wall systems in educational facilities. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF