• Title/Summary/Keyword: First order system dynamics

Search Result 139, Processing Time 0.024 seconds

A Basic Study on Estimation Model Development by Applying Probabilistic Forecasting Method for Determining Optimal Price of Residential Officetel (확률론적 추정 기법을 적용한 주거형 오피스텔의 최적 분양가 산정 모델 개발 기초연구)

  • Jang, Jun-Ho;Kim, Tae-Hui;Ha, Sung-Eun;Son, Ki-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.191-192
    • /
    • 2017
  • In response to the economic depression, the demand for fixed rent income has increased according to the easing construction regulations. it caused indiscriminated investment to stakeholders. This leads to oversupply in the multi-family Housing market and increases unsold housing and vacancy rates except specific area such as Gangnam-gu.In order to solve this issue, although studies on the optimization price of apartment houses has been conducted, the study is insufficient regarding on residential officetel. Therefore, the objective is to suggest a basic study on optimal price estimation model development by using probabilistic forecasting method in planning phase. To achieve the objective, first, variables are defined such as expenses, financial costs, income, etc. Second, causal loop diagram is suggested. Third, basic optimization prices estimation model is developed. In the future, this study can be used as one of decision making tools in planning phase of officetel development projects.

  • PDF

Human Operator Modeling of Target Tracking System for Improving Manual Control Command (표적추적장치의 수동제어명령 개선을 위한 운용자 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • Without human dynamics effects, the manually operated target tracking system has poor performance or instability in real environments. The tracking system is invalid when a human is added to the control loop as a real time delay, because input signals are generated by human operator to reduce the errors between target and gun. In this paper, we consider the human operator as a part of controller and modeling the human operator as a first-order model to generate the intentional force. But it is known that human modeling is not easy because of disturbance or noise of the vehicle while moving for the target. We performed a variety of experiments with real plant to identify the model's parameters and verify the proposed operator model's efficiency.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

Design of Aim Angle Following Guidance Law Using Lyapunov Theory (르야프노프 이론을 이용한 목표각 추종 유도법칙 설계)

  • Kim, Ki-Seok;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.81-89
    • /
    • 2002
  • Guidance laws can be conceptually classified into three categories although their mathematical representations are various and different. In this paper, a generalized conceptual guidance law including the concepts of the above categories is proposed. The aim angle is introduced using the geometry of the collision triangle. The aim angle represents the arbitrary angle between the pursuit angle and the expected collision angle. The objective of the proposed guidance law is to make the aim angle zero asymptotically. It can be shown that the aim angle error response for the considered system is same as that of the first order system. When the autopilot of the missile system has slow dynamics, autopilot time lag may deteriorate the performance of the guidance law performance. In this case, another new guidance law compensating the autopilot time lag effect is proposed. To verify the proposed guidance laws, several numerical simulations are performed.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Long-Term Monitoring of Climatic and Soil Factors, and Tree Growths in Worak Mountain Using Phytogram System (파이토그램을 이용한 월악산 기후요소, 토양환경 및 수목생장 장기간 모니터링)

  • 박원규;서정욱
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Using the phytogram system, this study monitored hourly environmental factors(climate and soil), and radial growths and cambium activities of conifers in Worak mountain for 28 months from May 1996 to October 1998 to examine the influences of climatic factors on tree growths/carnbium activities of conifers in Worak Mountain, Korea. The phytogram system first puts a fine electrode into cambial zone. This device can automatically record environmental factors and cambium electrochemistry(hydration and proton levels). Dendrometers are attached to the phytogram for monitoring seasonal dynamics of cambial growth. We compared the results of radial growth by species and by diameter class. The growth decreased in order of Larix leptolepis, Pinus densiflora and Pinus rigida. Pre-monsoon growths were fast and May-June moisture regime was the most critical for all species. In the middle of September, radial growths were finished. The proton level and stem diameter reached the minimum at 4 p.m. On the other hand, the hydration level reached the maximum at 4 p.m. This diurnal change resulted from transpiration and the release of water from phloem storage to sapwood through xylem stream.

  • PDF

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.

Duplex Control for Consensus of Multi-agent Systems with Input Saturations (입력포화가 존재하는 다중 에이전트 시스템의 일치를 위한 이종제어)

  • Lim, Young-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.284-291
    • /
    • 2021
  • In this paper, we study the consensus problem for multi-agent systems with input saturations. The goal of consensus is to achieve a swarming behavior of multi-agent systems by reaching the agreement through information exchange. This paper considers agents modeled by first-order dynamics with input saturations. In order to guarantee the global convergence of the agents, it is assumed that the agents are stable. Moreover, considering the disturbances, we propose the PI based duplex control method to achieve the consensus. The proposed P controller and I controller are composed of different information network. Then, we investigate the conditions of the information networks and the control gains of P, I controllers to achieve the consensus applying the Lyapunov stability theorem and the Lasalle's Invariance Principle. Finally, we conduct the simulations to validate the theoretical results.

Effect of low frequency oscillations during milking on udder temperature and welfare of dairy cows

  • Antanas Sederevicius;Vaidas Oberauskas;Rasa Zelvyte;Judita Zymantiene;Kristina Musayeva;Juozas Zemaitis;Vytautas Jurenas;Algimantas Bubulis;Joris Vezys
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.244-257
    • /
    • 2023
  • The study aimed to investigate the effect of low-frequency oscillations on the cow udder, milk parameters, and animal welfare during the automated milking process. The study's objective was to investigate the impact of low-frequency oscillations on the udder and teats' blood circulation by creating a mathematical model of mammary glands, using milkers and vibrators to analyze the theoretical dynamics of oscillations. The mechanical vibration device developed and tested in the study was mounted on a DeLaval automatic milking machine, which excited the udder with low-frequency oscillations, allowing the analysis of input parameters (temperature, oscillation amplitude) and using feedback data, changing the device parameters such as vibration frequency and duration. The experimental study was performed using an artificial cow's udder model with and without milk and a DeLaval milking machine, exciting the model with low-frequency harmonic oscillations (frequency range 15-60 Hz, vibration amplitude 2-5 mm). The investigation in vitro applying low-frequency of the vibration system's first-order frequencies in lateral (X) direction showed the low-frequency values of 23.5-26.5 Hz (effective frequency of the simulation analysis was 25.0 Hz). The tested values of the first-order frequency of the vibration system in the vertical (Y) direction were 37.5-41.5 Hz (effective frequency of the simulation analysis was 41.0 Hz), with higher amplitude and lower vibration damping. During in vivo experiments, while milking, the vibrator was inducing mechanical milking-similar vibrations in the udder. The vibrations were spreading to the entire udder and caused physiotherapeutic effects such as activated physiological processes and increased udder base temperature by 0.57℃ (p < 0.001), thus increasing blood flow in the udder. Used low-frequency vibrations did not significantly affect milk yield, milk composition, milk quality indicators, and animal welfare. The investigation results showed that applying low-frequency vibration on a cow udder during automatic milking is a non-invasive, efficient method to stimulate blood circulation in the udder and improve teat and udder health without changing milk quality and production. Further studies will be carried out in the following research phase on clinical and subclinical mastitis cows.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.