• Title/Summary/Keyword: First half cycle

Search Result 75, Processing Time 0.023 seconds

Forecasting Korean CPI Inflation (우리나라 소비자물가상승률 예측)

  • Kang, Kyu Ho;Kim, Jungsung;Shin, Serim
    • Economic Analysis
    • /
    • v.27 no.4
    • /
    • pp.1-42
    • /
    • 2021
  • The outlook for Korea's consumer price inflation rate has a profound impact not only on the Bank of Korea's operation of the inflation target system but also on the overall economy, including the bond market and private consumption and investment. This study presents the prediction results of consumer price inflation in Korea for the next three years. To this end, first, model selection is performed based on the out-of-sample predictive power of autoregressive distributed lag (ADL) models, AR models, small-scale vector autoregressive (VAR) models, and large-scale VAR models. Since there are many potential predictors of inflation, a Bayesian variable selection technique was introduced for 12 macro variables, and a precise tuning process was performed to improve predictive power. In the case of the VAR model, the Minnesota prior distribution was applied to solve the dimensional curse problem. Looking at the results of long-term and short-term out-of-sample predictions for the last five years, the ADL model was generally superior to other competing models in both point and distribution prediction. As a result of forecasting through the combination of predictions from the above models, the inflation rate is expected to maintain the current level of around 2% until the second half of 2022, and is expected to drop to around 1% from the first half of 2023.

Analysis of Detection Ability Impact of Clang Static Analysis Tool by Source Code Obfuscation Technique (소스 코드 난독화 기법에 의한 Clang 정적 분석 도구의 성능 영향 분석)

  • Jin, Hongjoo;Park, Moon Chan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.605-615
    • /
    • 2018
  • Due to the rapid growth of the Internet of Things market, the use of the C/C++ language, which is the most widely used language in embedded systems, is also increasing. To improve the quality of code in the C/C++ language and reduce development costs, it is better to use static analysis, a software verification technique that can be performed in the first half of the software development life cycle. Many programs use static analysis to verify software safety and many static analysis tools are being used and studied. In this paper, we use Clang static analysis tool to check security weakness detection performance of verified test code. In addition, we compared the static analysis results of the test codes applied with the source obfuscation techniques, layout obfuscation, data obfuscation, and control flow obfuscation techniques, and the static analysis results of the original test codes, Analyze the detection ability impact of the Clang static analysis tool.

Fabrication and Test of the Three-Phase 6.6 kV Resistive Superconducting Fault Current Limiter Using YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 저항형 초전도 한류기 제작 및 시험)

  • Sim J.;Kim H. R.;Park K. B.;Kang J. S.;Lee B. W.;Oh I. S.;Hyun O. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 2004
  • We fabricated and tested a resistive type superconducting fault current limiter (SFCL) of three-phase 6.6 $kV_{rms}/200 A_{rms}$ rating based on YBCO thin films grown on sapphire substrates with a diameter of 4 inches, Short circuit tests were carried out at a accredited test facility for single line-to- ground faults, phase-to-phase faults and three-phase faults, Each phase of the SFCL was composed of 8${\times}$6 elements connected in series and parallel respectively. Each element was designed to have the rated voltage of 600 $V_{rms}$. A NiCr shunt resistor of 23 Ω was connected to each element for simultaneous quenches. Firstly, single phase-to-ground fault tests were carried out. The SFCL successfully developed the impedance in the circuit within 0.12 msec after fault and controlled the fault current of 10 $kA_{rms} below 816 A_{peak}$ at the first half cycle. In addition, in case of phase-to-phase fault and three- phase fault test. simultaneous quenches among the SFCLs of the phases successfully accomplished. In conclusion. the SFCL showed excellent performance of current limitation upon fault and stable operation regardless of the amplitude of fault currents.

Taxol-Induced Apoptosis and Nuclear Translocation of Mitogen-Activated Protein (MAP) Kinase in HeLa Cells

  • Kim, Sung-Su;Kim, Yoon-Suk;Jung, Yon-Woo;Choi, Hyun-Il;Shim, Moon-Jeong;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • Taxol, a natural product with significant anti-tumor activity, stabilizes microtubules and arrests cells in the G2/M phase of the cell cycle. It has been reported that taxol has additional effects on the cell such as an increase in tyrosine phosphorylation of proteins and activation of mitogen-activated protein (MAP) kinase. This phosphorylated kinase translocates into the nucleus and phosphorylates its substrate c-jun, c-fos, ATF2, and ATF3. The MAP kinase family is comprised of key regulatory proteins that control the cellular response to both proliferation and stress signals. First examination was cytotoxicity and apoptosis-induced concentration with paclitaxel in HeLa cell. A half-maximal inhibition of cell proliferation ($IC_{50}$) occurred at 13 nM paclitaxel. When DNA fragmentation was analyzed by agarose gel electrophoresis, a nucleosomal ladder became evident 24 h after a taxol (50 nM) addition to the cells. In addition, an apoptotic body was detected by electron microscopy. Taxol-treated cells were arrested at the S phase at 10 nM. Treatment of 50 nM taxol activated the extracellular signal-regulated protein kinase (ERK1), and a fraction of the activated MAP kinases entered the nucleus. It was also discovered that nucleus substrates c-jun was phosphorylated and activated in the cell. The activated ERK1 could subsequently translocate into the nucleus and phosphorylate its substrate c-jun as well. This study suggests that taxol-induced apoptosis might be related with signal transduction via MAP kinases.

  • PDF

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

Study of the Electrochemical Properties of Li4Ti5O12 Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries

  • Choi, Byung-Hyun;Lee, Dae-Jin;Ji, Mi-Jung;Kwon, Young-Jin;Park, Sung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.638-642
    • /
    • 2010
  • The spinel material $Li_4Ti_5O_{12}$ has attracted considerable attention as an anode electrode material for many battery applications owing to its light weight and high energy density. However, the real capacity of $Li_4Ti_5O_{12}$ powder as determined by the solid-state method is lower than the ideal capacity. In this study, we investigated the effect of the dopants in M-doped spinel $Ba_xLi_{4-2x}Ti_5O_{12}$(x=0.005, 0.05, 0.1) powders prepared by the solid-state reaction method and used as the anode material in lithiumion batteries. The results confirmed the effect of the Ba and Sr dopants on the powder properties of the spinel $Li_4Ti_5O_{12}$, which exhibited a pure spinel structure without any secondary phase in its XRD pattern. Moreover, the electrochemical properties of the spinel M-LTO materials were investigated using a half cell. The electrochemical data show that cells with anodes made of undoped $Li_4Ti_5O_{12}$ and Ba- and Sr-doped $Li_4Ti_5O_{12}$ have discharge capacities of 97, 130, and 112 mAh/g, respectively, at the first cycle. Moreover, the Ba- and Sr-doped spinel $Li_4Ti_5O_{12}$ demonstrated good properties in the mid-voltage range at 1.55 V, showing stable cyclic voltammogram properties which surpassed those of the same material without Ba or Sr at 1 C after 100 cycles.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템의 기초연구)

  • Hyun, Jun-Ho;Kim, Yeong-Min;Jung, Jin-Ho;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.204-209
    • /
    • 2011
  • According to the environment report of UN, korea was classified as potable water shortage countries. Approximately 71% of the Earth's surface is covered by ocean. However, it is difficult to use for industry of residential purpose without a certain processing. The development of solar and waste-heat used absorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar and waste-heat used and adsorption desalination system was introduced. The design is divided into three parts. First, the evaporator for the vaporization of the top water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basicresearch, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar and waste energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times.

  • PDF

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.