• Title/Summary/Keyword: Firms Growth

Search Result 752, Processing Time 0.018 seconds

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Brand Equity and Purchase Intention in Fashion Products: A Cross-Cultural Study in Asia and Europe (상표자산과 구매의도와의 관계에 관한 국제비교연구 - 아시아와 유럽의 의류시장을 중심으로 -)

  • Kim, Kyung-Hoon;Ko, Eun-Ju;Graham, Hooley;Lee, Nick;Lee, Dong-Hae;Jung, Hong-Seob;Jeon, Byung-Joo;Moon, Hak-Il
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.245-276
    • /
    • 2008
  • Brand equity is one of the most important concepts in business practice as well as in academic research. Successful brands can allow marketers to gain competitive advantage (Lassar et al.,1995), including the opportunity for successful extensions, resilience against competitors' promotional pressures, and the ability to create barriers to competitive entry (Farquhar, 1989). Branding plays a special role in service firms because strong brands increase trust in intangible products (Berry, 2000), enabling customers to better visualize and understand them. They reduce customers' perceived monetary, social, and safety risks in buying services, which are obstacles to evaluating a service correctly before purchase. Also, a high level of brand equity increases consumer satisfaction, repurchasing intent, and degree of loyalty. Brand equity can be considered as a mixture that includes both financial assets and relationships. Actually, brand equity can be viewed as the value added to the product (Keller, 1993), or the perceived value of the product in consumers' minds. Mahajan et al. (1990) claim that customer-based brand equity can be measured by the level of consumers' perceptions. Several researchers discuss brand equity based on two dimensions: consumer perception and consumer behavior. Aaker (1991) suggests measuring brand equity through price premium, loyalty, perceived quality, and brand associations. Viewing brand equity as the consumer's behavior toward a brand, Keller (1993) proposes similar dimensions: brand awareness and brand knowledge. Thus, past studies tend to identify brand equity as a multidimensional construct consisted of brand loyalty, brand awareness, brand knowledge, customer satisfaction, perceived equity, brand associations, and other proprietary assets (Aaker, 1991, 1996; Blackston, 1995; Cobb-Walgren et al., 1995; Na, 1995). Other studies tend to regard brand equity and other brand assets, such as brand knowledge, brand awareness, brand image, brand loyalty, perceived quality, and so on, as independent but related constructs (Keller, 1993; Kirmani and Zeithaml, 1993). Walters(1978) defined information search as, "A psychological or physical action a consumer takes in order to acquire information about a product or store." But, each consumer has different methods for informationsearch. There are two methods of information search, internal and external search. Internal search is, "Search of information already saved in the memory of the individual consumer"(Engel, Blackwell, 1982) which is, "memory of a previous purchase experience or information from a previous search."(Beales, Mazis, Salop, and Staelin, 1981). External search is "A completely voluntary decision made in order to obtain new information"(Engel & Blackwell, 1982) which is, "Actions of a consumer to acquire necessary information by such methods as intentionally exposing oneself to advertisements, taking to friends or family or visiting a store."(Beales, Mazis, Salop, and Staelin, 1981). There are many sources for consumers' information search including advertisement sources such as the internet, radio, television, newspapers and magazines, information supplied by businesses such as sales people, packaging and in-store information, consumer sources such as family, friends and colleagues, and mass media sources such as consumer protection agencies, government agencies and mass media sources. Understanding consumers' purchasing behavior is a key factor of a firm to attract and retain customers and improving the firm's prospects for survival and growth, and enhancing shareholder's value. Therefore, marketers should understand consumer as individual and market segment. One theory of consumer behavior supports the belief that individuals are rational. Individuals think and move through stages when making a purchase decision. This means that rational thinkers have led to the identification of a consumer buying decision process. This decision process with its different levels of involvement and influencing factors has been widely accepted and is fundamental to the understanding purchase intention represent to what consumers think they will buy. Brand equity is not only companies but also very important asset more than product itself. This paper studies brand equity model and influencing factors including information process such as information searching and information resources in the fashion market in Asia and Europe. Information searching and information resources are influencing brand knowledge that influences consumers purchase decision. Nine research hypotheses are drawn to test the relationships among antecedents of brand equity and purchase intention and relationships among brand knowledge, brand value, brand attitude, and brand loyalty. H1. Information searching influences brand knowledge positively. H2. Information sources influence brand knowledge positively. H3. Brand knowledge influences brand attitude. H4. Brand knowledge influences brand value. H5. Brand attitude influences brand loyalty. H6. Brand attitude influences brand value. H7. Brand loyalty influences purchase intention. H8. Brand value influence purchase intention. H9. There will be the same research model in Asia and Europe. We performed structural equation model analysis in order to test hypotheses suggested in this study. The model fitting index of the research model in Asia was $X^2$=195.19(p=0.0), NFI=0.90, NNFI=0.87, CFI=0.90, GFI=0.90, RMR=0.083, AGFI=0.85, which means the model fitting of the model is good enough. In Europe, it was $X^2$=133.25(p=0.0), NFI=0.81, NNFI=0.85, CFI=0.89, GFI=0.90, RMR=0.073, AGFI=0.85, which means the model fitting of the model is good enough. From the test results, hypotheses were accepted. All of these hypotheses except one are supported. In Europe, information search is not an antecedent of brand knowledge. This means that sales of global fashion brands like jeans in Europe are not expanding as rapidly as in Asian markets such as China, Japan, and South Korea. Young consumers in European countries are not more brand and fashion conscious than their counter partners in Asia. The results have theoretical, practical meaning and contributions. In the fashion jeans industry, relatively few studies examining the viability of cross-national brand equity has been studied. This study provides insight on building global brand equity and suggests information process elements like information search and information resources are working differently in Asia and Europe for fashion jean market.

  • PDF