• 제목/요약/키워드: Firing strength

검색결과 173건 처리시간 0.03초

타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교 (A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS)

  • 김지혜;박상원;방몽숙;양홍서;박하옥;임현필;오계정;김현승;이광민;이경구
    • 대한치과보철학회지
    • /
    • 제45권2호
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성 (THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD)

  • 황승우;이근우
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향 (INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS)

  • 임애란;임호남;박남수
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.165-191
    • /
    • 1990
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoration, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of $5{\times}5{\times}25mm$. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respecitvely. Porcelain glass transition temperatures and expansion values were derived alloy-porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal-porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated: 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than that of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly 5. Alloy-porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향 (INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS)

  • 임애란;임호남;박남수
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.111-137
    • /
    • 1991
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoratoin, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of 5 x 5 x 25mm. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respectively. Porcelain glass transition temperatures and expansion values were derived alloy- porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal- porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated : 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly. 5. Alloy- porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

도재용착용 Non beryllium 합금의 degassing과 opaque의 소성술식에 따른 결합강도 분석 (Shear bond strength analysis of non beryllium PFM metal with degassing and opaque firing techniques)

  • 임중재;이상혁
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4357-4363
    • /
    • 2015
  • 본 연구는 베릴륨 함유하지 않은 Ni-Cr계 도재용 금속에 전용도재를 도포, 소성된 시편을 3점 굴곡 시험으로 결합강도를 측정하고, SAM/EDS로 표면성분관찰 실험한 AVOVA와 Tukey HSAD 사후검정을 실시한 결과는 다음과 같은 결론을 얻었다. 첫째. 모든 군에서 ISO 9693의 치과용 금속-도재 시편의 최소 결합강도의 최소치인 25 MPa의 전단결합강도를 상위하며 안정적인 결과값을 나타냈다. 둘째. 결합 강도는 대조군 V1은 $32.37{\pm}1.91MPa$으로 나타났고, 실험군 V2 $38.25{\pm}1.38MPa$, 실험군 V3 $46.43{\pm}2.14MPa$, 그리고 실험군 V4 $47.21{\pm}1.72MPa$, 순으로 나타났으며 통계적으로 유의한 차이를 보였다. 사후 검정 (Tukey's HSD test) 결과, 결합강도 실험결과 실험군 V4는, 대조군 V1보다 높게 나타났다. 셋째. 금속-도재의 결합에서 산화처리를 시행한 군보다 시행하지 않고 불투명 도재를 도포하고 소성한 군이 높게 나타났으며, paste불투명 도재보다 분말 불투명도재의 사용에 따른 결합강도가 더 높게 나타났다. 넷째. 실험군 V4는 금속과 도재의 결합강도 비교에서 가장 높게 나타났다.

PDP 무연 투명유전체 후막의 형성 및 특성 (The Fabrication and Properties of Lead-tree Transparent Dielectric Thick Films for PDP)

  • 허성철;최덕균;오영제
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1107-1113
    • /
    • 2004
  • Dry film method for large size of PDP(Plasma Display Panel) module has been actively investigated. This method for lead-free transparent dielectric formation depends on green sheet technology. By adjusting the composition of transparent dielectric powders and organics, uniformly dispersed slurry was fabricated, Viscosity of the slurry exhibited pseudoplastic behavior for tape casting, Cast green sheets were tested under tensile condition at room temperature. It was found that the increase in transparent dielectric powder and binder ratio leads to decrease in strain to failure of green sheets from 120 % to 34 % and from 255 % to 4 %, respectively. Tensile strength of green sheets decreased abruptly with increase of transparent dielectric powder ratio, with minimum at 0.13 MPa. On the other hand, tensile strength increased continuously from 0.1 MPa to 2.4 MPa with increase of binder ratio. The green sheets were attached on the glass substrate and heated by following firing schedule. As a result, the best result was obtained when fired at 580 $^{\circ}C$ for 15 min and had transmittance of 78 % in visible range 550 nm.

질화규소에 의한 SiC 소결체의 제조에 관한 연구 (Febrication of $Si_3-N_4$ Bonded SiC Ceramics)

  • 정주희;김종희
    • 한국세라믹학회지
    • /
    • 제20권1호
    • /
    • pp.63-69
    • /
    • 1983
  • It is know that $Si_3-N_4$ bonded SiC has almost all the valuable properties needed for the high temperature material and thus has bery wide range of applicability. Si powder and two different sized SiC powder were used as the raw mateials. Specimens were prepared by heating the green compact mode of the raw materials with polyvinyl alcohol binder in the nitrogen atmosphere. The bond-ing of SiC particles is brought about with the formation of reaction bonded silicon nitride phase between the particles he influences of the variation of the relative amounts of the raw materials and the amount of the organic binder on the density and the bend strength of the specimens were investigated. It was shown that the calculation of the amount of the nitridation of Si is somewhat complicated matter since some portion of the organic binder reacts with the Si during the firing process. Fixing the Si amount to 20w/o the distributions of the size of the SiC particles that gives the maximum density and the maximum strnegth were obtained through experiments. It was observed that the two distributions were not equal to each other. As the amount of Si increased the amount of Si reacted with nitrogen and the strength increased. The fracture mode was intergranular for the most part and the transgranular fracture was scarcely observed.

  • PDF

Supersonic and Subsonic Projectile Overtaking Problems in Muzzle Gun Applications

  • Gopalapillai, Rajesh;Nagdewe, Suryakant;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.711-722
    • /
    • 2008
  • A projectile when passes through a moving shock wave, experiences drastic changes in the aerodynamic forces as it moves from a high-pressure region to a low pressure region. These sudden changes in the forces are attributed to the wave structures produced by the projectile-flow field interaction, and are responsible for destabilizing the trajectory of the projectile. These flow fields are usually encountered in the vicinity of the launch tube exit of a ballistic range facility, thrusters, retro-rocket firings, silo injections, missile firing ballistics, etc. In earlier works, projectile was assumed in a steady flow field when the computations start and the blast wave maintains a constant strength. However, in real situations, the projectile produces transient effects in the flow field which have a deterministic effect on the overtaking process. In the present work, the overtaking problem encountered in the near-field of muzzle guns is investigated for several projectile Mach numbers. Computations have been carried out using a chimera mesh scheme. The results show that, the unsteady wave structures are completely different from that of the steady flow field where the blast wave maintains a constant strength, and the supersonic and subsonic overtaking conditions cannot be distinguished by identifying the projectile bow shock wave only.

  • PDF

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

Empress 2 도재의 두께에 따른 파절강도에 관한 연구 (INFLUENCE OF THICKNESS OF EMPRESS 2 CERAMIC ON FRACTURE STRENGTH)

  • 고정우;양재호;이선형
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.446-460
    • /
    • 2000
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic crowns be-cause of their lower strength. The relatively lower strength has limited the use of all-ceramic crowns to the areas where occlusal loads are lower Therefore many researches have been done to increase the strength of all-ceramic crowns. IPS Empress 2 is a new type of lithium disilicate glass-ceramic with enhanced physical characteristics which has been in use clinically since 1998. Previous researches reported that the flexural strength of all-ceramic material was greater than 300 MPa, and all-ceramic crowns can be used in staining or layering technique. The objective of this study was to investigate the influence of the thickness of IPS Empress 2 ceramic on fracture strength. Both staining technique and layering technique was investigated. Vita VMK was used as control. For all three groups, five specimens each of 0.8mm, 1.0mm, 1.4mm, 1.8mm, and 2.2mm thick-ness (a total of 75 specimens) were prepared. Control group : Vita VMK Porcelain specimens were prepared with dentine ceramic and liquid glazing was done. Group I : IPS Empress 2 were prepared with staining technique and stained twice and glazed once. Group II : IPS Empress 2 were prepared with layering technique and glazed after wash firing. The thickness and diameter of the specimen were measured and controlled after specimen preparation. Biaxial Flexure Test (ASTM Standard F394-78) was adopted as this test method produces results least affected by the edge condition of the specimens. Fracture strength was measured with Instron Universal Testing Machine. Conclusions are as follow : 1. The fracture strength was increase in order of control group, test group I, test group II. 2. Fracture strength of the group I (Empress 2 Staining) was 65.54 N in 0.8mm, 155.2 N in 1.0mm, 233.5 N in 1.4mm, 434.5 N in 1.8mm, and 600.1 N in 2.2mm. 3. Fracture strength of the group II (Empress 2 Layering) was 190.0 N in 0.8mm, 283.5 N in 1.0mm. 437.2 N in 1.4mm, 732.0 N in 1.8mm, and 1115.0 N in 2.2mm. 4. No statistical difference was found in flexural strengths according to thickness in a specified group(p>0.05).

  • PDF